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Frequency-domain representation of discrete signals and systems

— Response of an LTI system to a complex exponential
— Fourier representation of a discrete-time sequence

A Review of the discrete-time Fourier Transform (DTFT)

— Symmetry properties of the Fourier Transform
— Theorems regarding the Fourier Transform
— Table of Fourier pairs

The DTFT of the auto-correlation and of the cross-correlation

— the DTFT of the auto-correlation
— the DTFT of the cross-correlation
— examples
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Frequency-domain representation of discrete signals & systems
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* Question: what is the output of an LTI system when the input is a
complex exponential ?  y;1= ¢/ 00 < J1 < 400

2

+c0

y[n] _ Zx[n]h[n _ k] _ i h[k]x[n _ k] — i h[k]ejw(n—k) — i h[k]e—jrokejron — H(ejw )ej(on

f=—c0

k=—

— Answer: it's the complex exponential possibly modified in magnitude and
phase according to the frequency response of the LTI system.

— Note: this result reveals that el*" is an eigen function of the LTI system and
that H(el®) is the eigen value of the system at the angular frequency o radians.

« Definition of the frequency response of an LTI system

(obtained by computing the Fourier transform of its impulse response)

H(ejw )i ih[n]e‘j“’” — ‘H(ejw ]ejZH(efm)

n=—ao

— |H(e®)] — absolute value of the frequency response of the system

— ZH(el®) — phase of the frequency response of the system ,
© AJF
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Frequency-domain representation of discrete signals & systems
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— Example: what is the response of an LTI system, with h[n] real, to the input
X[n]=Acos(mgn+d) ?

: : AT i i
— Answer: x[n] may be expressed in a convenient way: x[n]= E[ef () 4 e ””0"*@]

and then:
y[n]= g[H(emo )ej((%’”m + H(e‘jm0 )e_j(mo”+¢) ] = A‘H(emO ] cos[a)on +¢+ LH(emO )]

— Important property of H(e®)
given the periodicity of the discrete complex exponential, e, the frequency
response H(e®) is periodic with period 2, so that in order to characterize it
completely, it is sufficient to represent the magnitude and phase considering a
frequency span of 2r radians, e.g., between -t and += or O and 2x.

— Example: what is the frequency response of a moving-average filter of length 5 ?

1/5

|15 0sn<4 |{{I[
)= 0 outros ...:

3-2-1 01 2 3 4 n
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Frequency-domain representation of discrete signals & systems

\/

— Answer: using the definition of the time-discrete Fourier transform:

H(e”)| ¢ -
—-j5e 1 . S Ea) 4 4 ( o
— :_ef‘]_(') :‘H(ej(r)lejlfle )
jo 5 )
S —
2

NOTE 1: the magnitude function is even.
NOTE 2: the phase function is odd.

-t -41/5 -21/5 27/5 /5 +m S
ZH(ei®) ¢ Questlion 1: why i1s that
- ZH(e®) # 20 ?
——————————— 4n/5 (note that -1=¢%7)

___________________ 3n/5
\ ___________ \ Question 2: why is that in this
o N representation of ZH(el®) we
\ aws N anS [ +m ® say that the phase is wrapped ?
...................... (what is the fundamental period
----------- in the representation of phase ?)

\ 4
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Fourier representation of a discrete sequence
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x[n]= i TX(ejm )ej””da) F X(ef”): ’X(ef”]ef“(em) = Zx[n]e‘f””

—T HN=—0o0

a
A 4

» the Fourier transform of a discrete-time signal x[n] is periodic with period
21 and exists if x[n] is absolutely summable

» the inverse Fourier transform allows to synthesize x[n] using a period of
its representation in the frequency domain

— Example:

(e"’) Za e/ = (ae""r =

Al ae

A

x[n] = a"uln]

if Jagi®| <1 .. Ja|<1
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Fourier representation of a discrete sequence

\/

« Example: what is the impulse response of an ideal low-pass filter ?
Hpg(e'®) .

»

e

@,

1 7 N 1 . sin nw
o . h nl=— J‘H e;m j(w‘ida) - Iejfonda) — c
HPB (e ) < > PB[ ] ' J PB( )e 217 J N

hPB [n] NOTE: hpg[n] consists of an IIR non-
causal system that is not realizable !

L?_%_Wqﬁf?c&lw_[ -10123]’*3““%@“

NOTE-+: the response hpg[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting fom hpg[n] by limiting its length, is the best

© AJF approximation, in the mean-square sense, to HPB(ej(”) (i.e. to the ideal filter). 6
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unitary

impulses

\

Fourier representation of a discrete sequence

— special cases

these are special cases because they are neither absolutely summable nor
square-summable, they arise from the theory of generalized functions but they
are very important in the analysis of signals and discrete-time systems:

e train of impulses

f&[n—e]

1

-3
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* unitary complex exponential

Jjoon

e

e unitary step

u[n]

F

v

a

\ 4

S 225(w + k2r)
k=—w

21

Dirac
impulses

/

A4n 2n 0 2n 4nm 6m 8w

Z 2n0(w—w, +k2r)

k=—

1

S

\ 4

1—

—jw

+ Z 7o (w+k2r)
k=—o0
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A Symmetry properties of the time-discrete Fourier transform
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— given x[n] , we may express x[n]=x,[n]+Xx [n] where:

x.[n]= %(x[n] 4 x'[on])= x[n]

« X.[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real,
Xg[N] is also known as the even component of x[n] since X [N]= X[-N]

)= (5[ = [ ==

* X,[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real,
X,[N] is also known as the odd component of x[n] since X [N]= -X,[-N]

— similarly, X(el®) = X (el*) + X (el*)

o)=Ll e xe e )

e

« X, (e®) is the conjugate symmetric function of X(el®), X (el®) is also said
the even component of X(el*) when X(e®) is real-valued

o) Hiter) e xcfe)

« X, (e®) is the conjugate anti-symmetric function of X(el®), X (el*) is also
said the odd component of X(el*) when X(el®) is real-valued 8
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Main symmetry properties of the time-discrete Fourier transform

x[n]

(complex)

x'[n]

x'[-n]

R{x[n]}

. X(el0)

jo .
e (e ) conjugate symmetric part of X(e'?)

j3 ]}

X[ 7]

X, [7]

x] __F

jo .
X 0 (e ) conjugate anti-symmetric part of X(e/®)

(real-valued)

x,[n]

x,[n]

Xyle’™ Xy(e”)=-x,(e)

- X(E)Xy () HX ()= X (e5)
i.e. the transform is conjugate symmetric :
Xﬂ{(ejm): Xm(e—j(o)

‘X(ej”] = ‘X(ej”]

LX(ef”): —LX(e‘f”) 9




A Review of the main Fourier transform theorems

vV (relate operations involving discrete sequences and the corresponding operations in the Fourier domain)
X[n], y[n] < > X(e°), Y(e)
linearity ax[n]+ by[n] aX (ef“’ )+ bY (ef @ )
. . . —jong jo

shift in n Xn—nyl e X (e ) n, inteiro

shift in ® e x{n] X [ej(m")]

‘time’ reversal X[—n] X(e )

: Co . ~dxle’” why is there no

< differentiation in ® nx[n] J (—) e qs .
§ do differentiation” in n ?
o) convolution X[n]* y[n] x(e)-v(e)
£ -
62 ) 1 o j(@-8)
E ; product x(n]- yln] ;:[X (e )Y(e )dé) (periodic convolution)
E N
.0 8 1 F N
2 Parseval theorem = — [x(e™ (e Jde
o & 2
=3 1% )2
S @ Parseval theorem = — [lxf(e’ ] dao
g0 . 27 *
'§ E (particular case) \ /
R b energy spectral density 10

© AJF



‘ Tabela de pares de Fourier

F . 1
X(el®)

example: |a"u[n], ’a’<l x[n] «

v

1—ae™®

o[n] 1

—jomn,

oln—n,| e

ié[n—ﬁ] ZZmS‘(a)Jrkar)
P fe=—on

40
ejfﬂon Z 270 (0 —w, + k2r)
fe=—on

l 400
uln] ot Y 78 (w+k27)
—€ k=
(n+Da'uln), Ja <1 | 1]1-ae’|

.e 2

. w
{1, 0<n<M SIH(MH)E oM
0

outros

b

. @
sin —
2

+a0

cos(w,n+ ¢) Ty [ej¢5(w —~w,+k2r)+e ! S(w+w, + k27r)]
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k=—o
sin n@
< L |el<ao,
nmw 0 <
, Sin @, (n+1) . o <lo|<7
r : uln|, |r|<l — TR
© AJF sin @, l/(l—2rcoscope " yre’ ”)
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Question: what is a practical way to find the inverse Fourier transform ?

|

F

x[n]=7?

N

« Example: X(¢/?)= : | causal <
X p ( ) (]_ _ae—](o )(]. _be—ja)) u

M ‘
‘_“(l—c[e*”’)

if M<N and poles are first-order, then: | X (e’”)=-3
1 4_(1 _dke_j{o)

. o . k=1
with 1|4, =(1-d.e )X (e’ )| oo,
and thus: 1 _alla- b) bib-a)

(1-ae *Y1-be ) 1—ae’® 1=be

which leads to: | x(n) = a"u[n]+ bLb”u[n]

|

Not to forget !
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The DTFT of the auto-correlation and of the cross-correlation

’m

\/

« the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

r[£] = x[£] * x*[~£] = z+°° x[k] x*[k — 2]

k=—o0

considering the DTFT properties

x[£] N X(e/®)

F .
x'[f] ——  X*(e)

F .
x[—f] —— X(e‘f“))

F .
X[~ ——  X"(e/*)

rlf] = x[f] s x'[—6] —— Ry(e/®) = X(eJ®) - X*(e/®) = [X(e/®)|]

Where R, (e/®) = |x(e/®)|" is called the spectral density of energy
© AJF 13



The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the auto-correlation (cont.)

— the Wiener-Khinchine Theorem: the auto-correlation and the spectral
density of energy form a Fourier pair

nlf] —— Ry(e®) = [x(ef®)[’

thus,

VIA
—_ jwY pjwt
. R(e ) e!“"dw

—T1T

T[]

and, in particular, the energy of the signal can be found using

T

E =r[0] = E KPR = o= [ R(e)dw = o f ()] dw
x k=—o0 27T 2T[
-7 -7

which reflects the Parseval Theorem
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The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

+ 0o

oyl = x[€] 5y (€] = " xlk]y’[k - 4]

k=—o0

considering the DTFT properties

F .

x[f] X(ef“))
F .

yl¢] — G

vl —  Y(e7®)
F .
yI=t] —— Y(e?)

y*[—£] AN Y*(e/®)

then

Ty €] = x[€] * y*[—£] P Ryy(e7?) = X(e/®) - Y*(e/?)

© AIF 15
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The DTFT of the auto-correlation and of the cross-correlation
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e examples

let us admit two discrete-time signals, x[n] and y[n]

y[n] 3

x[n] 3
Mf : H'
o 1 2 0 2

n 1

v

it can be easily concluded that

F . . )
6['6] + 25['€ - 1] + 5[‘£ — 2] —> X(e]w) =3 + Ze_](‘) + e_]zw

x[f] =3
F . ) .
5[€] +26[£ — 1] +36[£ — 2] —— Y(e/®) =1+ 2e7J® 4 3¢7/2®

y[£]

R.(e/®) = 3e/2® +8e/% + 14 + 8e /% + 3e7/2¢ = R ,(e/¥), (why?)

Ry, (67©) = 9€729 4 1279 4 10 + 4e 7@ 4 ¢7/20
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