2

Summary

- Frequency-domain representation of discrete signals and systems
 - Response of an LTI system to a complex exponential
 - Fourier representation of a discrete-time sequence
- A Review of the discrete-time Fourier Transform (DTFT)
 - Symmetry properties of the Fourier Transform
 - Theorems regarding the Fourier Transform
 - Table of Fourier pairs
- The DTFT of the auto-correlation and of the cross-correlation
 - the DTFT of the auto-correlation
 - the DTFT of the cross-correlation
 - examples

Frequency-domain representation of discrete signals & systems

• Question: what is the output of an LTI system when the input is a complex exponential ? $x[n] = e^{j\omega n}$, $-\infty < n < +\infty$

$$y[n] = \sum_{k=-\infty}^{+\infty} x[n]h[n-k] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k] = \sum_{k=-\infty}^{+\infty} h[k]e^{j\omega(n-k)} = \sum_{k=-\infty}^{+\infty} h[k]e^{-j\omega k}e^{j\omega n} = H(e^{j\omega})e^{j\omega n}$$

- Answer: it's the complex exponential possibly modified in magnitude and phase according to the <u>frequency response</u> of the LTI system.
- **Note**: this result reveals that $e^{j\omega n}$ is an eigen function of the LTI system and that $H(e^{j\omega})$ is the eigen value of the system at the angular frequency ω radians.
- Definition of the frequency response of an LTI system (obtained by computing the Fourier transform of its impulse response)

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n} = |H(e^{j\omega})|e^{j\angle H(e^{j\omega})}$$

- $|H(e^{j\omega})| \rightarrow$ absolute value of the frequency response of the system
- $\angle H(e^{j\omega})$ \rightarrow phase of the frequency response of the system

Frequency-domain representation of discrete signals & systems

- **Example**: what is the response of an LTI system, with h[n] real, to the input $x[n]=A\cos(\omega_0 n+\phi)$?
- **Answer**: x[n] may be expressed in a convenient way: $x[n] = \frac{A}{2} \left[e^{j(\omega_0 n + \phi)} + e^{-j(\omega_0 n + \phi)} \right]$ and then:

$$x[n] = \frac{A}{2} \left[e^{j(\omega_0 n + \phi)} + e^{-j(\omega_0 n + \phi)} \right]$$

$$y[n] = \frac{A}{2} \left[H(e^{j\omega_0}) e^{j(\omega_0 n + \phi)} + H(e^{-j\omega_0}) e^{-j(\omega_0 n + \phi)} \right] = A \left| H(e^{j\omega_0}) \cos[\omega_0 n + \phi + \angle H(e^{j\omega_0})] \right|$$

- Important property of H(e^{jω}) given the periodicity of the discrete complex exponential, $e^{j\omega n}$, the frequency response $H(e^{j\omega})$ is periodic with period 2π , so that in order to characterize it completely, it is sufficient to represent the magnitude and phase considering a frequency span of 2π radians, e.g., between $-\pi$ and $+\pi$ or 0 and 2π .
- Example: what is the frequency response of a moving-average filter of length 5?

$$h[n] = \begin{cases} 1/5 & 0 \le n \le 4 \\ 0 & outros \end{cases}$$

Frequency-domain representation of discrete signals & systems

Answer: using the definition of the time-discrete Fourier transform:

NOTE 1: the magnitude function is even.

NOTE 2: the phase function is odd.

Question 1: why is that

$$\angle H(e^{j\omega}) \neq -2\omega$$
?

(note that $-1=e^{\pm j\pi}$)

$$\begin{array}{c|c} \angle H(e^{j\omega}) & \pi \\ 4\pi/5 \\ 3\pi/5 \\ \hline -4\pi/5 & 4\pi/5 \\ \hline -4\pi/5 & -\pi \end{array}$$

Fourier representation of a discrete sequence

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$+ K(e^{j\omega}) = |X(e^{j\omega})| e^{j\omega X(e^{j\omega})} = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$$

- the Fourier transform of a discrete-time signal x[n] is periodic with period 2π and exists if x[n] is absolutely summable
- the inverse Fourier transform allows to synthesize x[n] using a period of its representation in the frequency domain

Example:

$$X[n] = a^{n}u[n]$$

$$X(e^{j\omega}) = \sum_{n=0}^{+\infty} a^{n}e^{-j\omega n} = \sum_{n=0}^{+\infty} \left(ae^{-j\omega}\right)^{n} = \frac{1}{1 - ae^{-j\omega}}$$

$$\text{if } |ae^{-j\omega}| < 1 \therefore |a| < 1$$

Fourier representation of a discrete sequence

• Example: what is the impulse response of an ideal low-pass filter?

NOTE+: the response $h_{PB}[n]$ is not absolutely summable, but its square is summable, which highlights the fact that a filter resulting fom $h_{PB}[n]$ by limiting its length, is the best approximation, in the mean-square sense, to $H_{PB}(e^{j\omega})$ (i.e. to the ideal filter).

© AJF

Fourier representation of a discrete sequence

- special cases

these are special cases because they are neither absolutely summable nor square-summable, they arise from the theory of generalized functions but they are very important in the analysis of signals and discrete-time systems:

7

Symmetry properties of the time-discrete Fourier transform

- given x[n], we may express $x[n]=x_e[n]+x_o[n]$ where:

$$x_e[n] = \frac{1}{2}(x[n] + x^*[-n]) = x_e^*[-n]$$

 $x_e[n]$ is the <u>conjugate symmetric sequence</u> of x[n]; in case x[n] is real, $x_e[n]$ is also known as the even component of x[n] since $x_e[n] = x_e[-n]$

$$x_o[n] = \frac{1}{2} (x[n] - x^*[-n]) = -x_o^*[-n]$$

• $x_0[n]$ is the <u>conjugate anti-symmetric sequence</u> of x[n]; in case x[n] is real, $x_o[n]$ is also known as the *odd* component of x[n] since $x_o[n] = -x_o[-n]$

- similarly, $X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$

$$X_{e}(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega}) + X^{*}(e^{-j\omega}) \right] = X_{e}^{*}(e^{-j\omega})$$

• $X_e(e^{j\omega})$ is the conjugate symmetric function of $X(e^{j\omega})$, $X_e(e^{j\omega})$ is also said the even component of $X(e^{j\omega})$ when $X(e^{j\omega})$ is real-valued

$$X_{o}(e^{j\omega}) = \frac{1}{2} [X(e^{j\omega}) - X^{*}(e^{-j\omega})] = -X_{o}^{*}(e^{-j\omega})$$

• $X_o(e^{j\omega})$ is the conjugate anti-symmetric function of $X(e^{j\omega})$, $X_o(e^{j\omega})$ is also said the *odd* component of $X(e^{j\omega})$ when $X(e^{j\omega})$ is real-valued

Main symmetry properties of the time-discrete Fourier transform

$$x[n] \xrightarrow{\text{F}} X(e^{j\omega}) = X_{\Re}(e^{j\omega}) + jX_{\Im}(e^{j\omega}) = X^*(e^{-j\omega})$$
(real-valued)
$$i.e. \text{ the transform is conjugate symmetric}:$$

$$X_{\Re}(e^{j\omega}) = X_{\Re}(e^{-j\omega})$$

$$X_{\Im}(e^{j\omega}) = -X_{\Im}(e^{-j\omega})$$

Review of the main Fourier transform theorems

(relate operations involving discrete sequences and the corresponding operations in the Fourier domain)

Tabela de pares de Fourier

example:

$$\left|a^n u[n], \quad |a| < 1\right|$$

x[n]

 $X(e^{j\omega})$

$$\frac{1}{1 - ae^{-j\omega}}$$

 $\delta[n]$

$$\delta[n-n_0]$$

$$\sum_{\ell=-\infty}^{+\infty} \mathcal{S}[n-\ell]$$

$$e^{j\omega_0 n}$$

$$(n+1)a^nu[n], \quad |a|<1$$

$$\begin{cases} 1, & 0 \le n \le M \\ 0, & outros \end{cases}$$

$$\cos(\omega_0 n + \phi)$$

$$\frac{\sin n\omega_c}{n\pi}$$

$$\left|r^n \frac{\sin \omega_p(n+1)}{\sin \omega_p} u[n], \quad |r| < 1\right|$$

 $e^{-j\omega n_0}$

$$\left| \sum_{k=-\infty}^{+\infty} 2\pi \delta(\omega + k2\pi) \right|$$

$$\sum_{k=-\infty}^{+\infty} 2\pi \delta(\omega - \omega_0 + k2\pi)$$

$$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega + k2\pi)$$

$$1/\left|1-ae^{-j\omega}\right|^2$$

$$\frac{\sin(M+1)\frac{\omega}{2}}{\sin\frac{\omega}{2}} \cdot e^{-j\omega\frac{M}{2}}$$

$$\pi \sum_{k=-\infty}^{+\infty} \left[e^{j\phi} \delta(\omega - \omega_0 + k2\pi) + e^{-j\phi} \delta(\omega + \omega_0 + k2\pi) \right]$$

$$\begin{cases}
1, & |\omega| < \omega_c \\
0, & \omega_c < |\omega| \le \pi
\end{cases}$$

$$\sqrt{1/(1-2r\cos\omega_p e^{-j\omega}+r^2e^{-j2\omega})}$$

Fundamentals of Signal Processing, week 2 FEUP-DEEC, September 22-24, 2025

Question: what is a practical way to find the inverse Fourier transform?

• Example:
$$X(e^{j\omega}) = \frac{1}{(1-ae^{-j\omega})(1-be^{-j\omega})}$$
, causal \leftarrow $x[n]=?$

with:
$$A_k = (1 - d_k e^{-j\omega}) X(e^{j\omega}) \Big|_{e^{j\omega} = d_k}$$

and thus:
$$\frac{1}{(1-ae^{-j\omega})(1-be^{-j\omega})} = \frac{a/(a-b)}{1-ae^{-j\omega}} + \frac{b/(b-a)}{1-be^{-j\omega}}$$
which leads to:
$$x(n) = \frac{a}{a-b}a^nu[n] + \frac{b}{b-a}b^nu[n]$$

$$x(n) = \frac{a}{a-b} a^n u[n] + \frac{b}{b-a} b^n u[n]$$

Not to forget!

the DTFT of the auto-correlation

the auto-correlation is defined as (in this discussion, we admit energy signals)

$$r_x[\ell] = x[\ell] * x^*[-\ell] = \sum_{k=-\infty}^{+\infty} x[k] x^*[k-\ell]$$

considering the DTFT properties

$$x[\ell] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j\omega})$$

$$x^*[\ell] \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(e^{-j\omega})$$

$$x[-\ell] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{-j\omega})$$

$$x^*[-\ell] \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(e^{j\omega})$$

then

$$r_{x}[\ell] = x[\ell] * x^{*}[-\ell] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad R_{x}(e^{j\omega}) = X(e^{j\omega}) \cdot X^{*}(e^{j\omega}) = \left| X(e^{j\omega}) \right|^{2}$$

Where $R_{\chi}(e^{j\omega}) = |X(e^{j\omega})|^2$ is called the spectral density of energy

- the DTFT of the auto-correlation (cont.)
 - the Wiener-Khinchine Theorem: the auto-correlation and the spectral density of energy form a Fourier pair

$$r_{x}[\ell] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad R_{x}(e^{j\omega}) = \left| X(e^{j\omega}) \right|^{2}$$

thus,

$$r_{x}[\ell] = \frac{1}{2\pi} \int_{-\pi}^{\pi} R(e^{j\omega}) e^{j\omega\ell} d\omega$$

and, in particular, the energy of the signal can be found using

$$E = r_x[0] = \sum_{k=-\infty}^{+\infty} |x[k]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} R(e^{j\omega}) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

which reflects the Parseval Theorem

the DTFT of the cross-correlation

the cross-correlation is defined as (we admit energy signals)

$$r_{xy}[\ell] = x[\ell] * y^*[-\ell] = \sum_{k=-\infty}^{+\infty} x[k] y^*[k-\ell]$$

considering the DTFT properties

$$x[\ell] \xrightarrow{\mathcal{F}} X(e^{j\omega})$$

$$y[\ell] \xrightarrow{\mathcal{F}} Y(e^{j\omega})$$

$$y^*[\ell] \xrightarrow{\mathcal{F}} Y^*(e^{-j\omega})$$

$$y[-\ell] \xrightarrow{\mathcal{F}} Y(e^{-j\omega})$$

$$y^*[-\ell] \xrightarrow{\mathcal{F}} Y(e^{j\omega})$$

then

$$r_{xy}[\ell] = x[\ell] * y^*[-\ell] \longleftrightarrow R_{xy}(e^{j\omega}) = X(e^{j\omega}) \cdot Y^*(e^{j\omega})$$

examples

let us admit two discrete-time signals, x[n] and y[n]

it can be easily concluded that

$$x[\ell] = 3\delta[\ell] + 2\delta[\ell - 1] + \delta[\ell - 2] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad X(e^{j\omega}) = 3 + 2e^{-j\omega} + e^{-j2\omega}$$
$$y[\ell] = \delta[\ell] + 2\delta[\ell - 1] + 3\delta[\ell - 2] \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad Y(e^{j\omega}) = 1 + 2e^{-j\omega} + 3e^{-j2\omega}$$

$$R_x(e^{j\omega}) = 3e^{j2\omega} + 8e^{j\omega} + 14 + 8e^{-j\omega} + 3e^{-j2\omega} = R_y(e^{j\omega}), \text{ (why ?)}$$

$$R_{xy}(e^{j\omega}) = 9e^{j2\omega} + 12e^{j\omega} + 10 + 4e^{-j\omega} + e^{-j2\omega}$$