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Overview

* Analysis and representation of LTI systems in the frequency
domain

— Basic concepts
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ideal frequency-selective filters

phase distortion and group delay

difference equation and transfer function

inverse system

— All-pass systems
— Minimum-phase and maximum-phase systems
— Linear-phase systems

definition
FIR systems of type 1, type 2, type 3 and type 4

« Zero location of FIR linear-phase systems
 relation between linear-phase, minimum and maximum

phase FIR systems
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« Alternative complete characterizations of an LTI system

— using the impulse response h[n]:  Y#]= x[n]*h[n] = Zx[k]h[n—k]

— using the frequency response of the system, i.e. the Fourier transform
of h[n], presuming convergence:

O W W W e T

« where |H(el®)| is the magnitude response of the system
« where ZH(el*) is the phase response of the system

— using the transfer function of the system, i.e. the Z transform of h[n]
and the associated region of convergence (admitting it exists):

Y(z): H(Z)’X(Z)

— these last two alternatives are particularly important in the representation and
analysis of discrete-time systems because they reveal many of its properties
and characteristics.

© AJF 2
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« |deal frequency-selective filters
— they amplify or attenuate, as desired, specific frequency regions

— Example 1: ideal low-pass filter

1

0, a)p<‘a)‘£7r - 7n

, |o|<o, F sin@,n

)|

— Example 2: ideal high-pass filter

_ 0, o< . :
HPA(QW)_{ | | g A I_HPB(QJ ) F hPA[n]:§[n]—hPB[n]:5[n]—smmpn, — o< n<+0

a)p<|a)|£7r - Tn
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NOTE 1: these are zero-phase filters !
NOTE 2: these filters are computationally unrealizable, why ?

3
© AJF
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« Phase distortion and group delay

— usually it is desired that a system exhibits linear phase response since
this denotes a simple system delay:

F
+ Example 10 p[n]=0[n-n,] «— [H(")=e'™ . sH(")=-0n,
« Example 2:
H (ef” ): e ’ ‘w‘ =Dy <—>F h,.[n]= sin a)P(n — nd) —00 < N <+
p O, a)p<‘a)‘£7r B B z(n—nd) ’

— deviations to the linear phase response are known as phase
distortions and are better characterized using the concept of group
delay:

o) =-—_{zH(e”)

— the group delay gives the delay of the system as a function of frequency. It is

clear that in the case of linear phase systems, the group delay is constant. 4
© AJF
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« The difference equation and the transfer function

— another alternative allowing to describe a discrete-time system is the
constant-coefficient difference equation

N M N ak M b(
Y ayn-kl=Y bain—t] & ynj=-3 “Eyn-kl+Y ~xln-(]
=0 7=0 =1 A, =0

— if the initial conditions are complete rest, the discrete-time system is
causal, linear and time-invariant. Under these circumstances, the
characteristics and properties of the LTI system are better studied
using the Z transform:

/

A
v

Y ayln-k1=3 bn—1]

N M
Z a,77"Y(z) = Z b, 7" X (z)
k=0 (=0

from which we derive the algebraic form of the transfer function of the
system:

M

M ( 1)
b7 -7
H(z)i Y(z) — ; ' by i C

X@ yazt “[10-427)
k=0

© AJF
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— Example: find the difference equation of the LTI system characterized by:

H(z)= (1+27f

EEED

Solution: H(z) may be presented as:

14227 +27 Y(2)

14lz1 2z X@
4 g

H(z)=

from where we conclude easily that:

y[n]+iy[n—l]—§y[n—2]:x[n]+2x[n—l]+x[n—2]

* Question: what is the importance, in this problem, of specifying the RC of H(z) ?

another way to formulate the question: is the difference equation a complete form
characterizing an LTI system ?

« Concept of stability and causality

— as already seen, these are not mutually dependent concepts
© AJF
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* Inverse system

— given a system function H(z), its inverse is the system function H,(z)
such that if it is cascaded with H(z), the resulting system is an all-pass

system:
VA

G(z)=H(z)-H(z)=1 = Hi(z):ﬁ .

v

glnl = hn]*h[n] = o[n]

— it results that the frequency response of the inverse system, if it exists,
it is given by:

. |
)= e

 NOTE: not all systems have an inverse system (i.e. a reciprocal) !

— in particular, rational system functions have a reciprocal that is easy to
identify: M N
, [-ez?) [10-a.2")

H(z)=—2 5 L HE@=Y
“I10-49.27) [(i-cz?)

d]i 1 ‘[-:1

ay
bO

where the poles of H(z) are the zeroes of H,(z) and vice-versa.
© AJF 7
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Question: what is the region of convergence of H,(z) ? Is it unique ?

A: It may be any RC (i.e. it is valid) as long as it overlaps with that of H(z).

Example:
1-05Z" 1-0.9Z" zZ|>05 ?
HEH=0L oy —— H@-22 e | F
1-0.92" 1-0.5Z |2[<0.5 2
it is only valid the one that overlaps with |z|>0.9 .. |z[>0.5

and thus: h[n]=0.9"u[n]-0.5(0.9)™'u[n-1], (causal and stable)
h[n]=0.5"u[n]-0.9(0.5)"1u[n-1], (causal and stable)

Important particular case: a stable and causal LTI system has an inverse
that is also stable and causal if all of its zeroes and poles are inside
the unit circumference, i.e. if it is a minimum-phase system (topic to be
developed later on ... )

© AJF 8
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Example: given the 2nd order causal system:

1
—re’’77! Xl —re 7

H(z)= i

ol

¢ find its difference equation, its impulse response and represent its frequency
response magnitude, phase and group delay characteristics (consider r=0.8
and 6=n/3). Repeat the problem for the inverse system.

Y(z) 1
X(z) 1-2rcos@Z ' +r’Z"

A: we may write: H(z)=

from where we conclude: y[n]=x[n]+2r-cos6-y[n-1]-r¢y[n-2]

concerning its impulse response, we also have:

1 —
H(2)= (1 —re’’7”! Xl — re‘jQZ_l) -

Hin] = r’ sin.(n - 1)6
sin &

_Wi=e) 1/li=e)
-’77 1—re 77

A
v

u[n]

>

‘z|>r

© AJF 9
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Regarding its frequency response, we start from: |[H(e’*)=H(z)

cmel® T (1 _ },ej(ﬁfw)xl _ re*j(9+(0))

Using the logarithmic scale for the magnitude response (which is common), we get:

2010g‘H(ej”) = 101og[H(ef”)-H*(ef“)]

= lO]og‘H(ej”)

and finding first H(el®)-H'(el*):

. 2 ) .
« NOTE: it is easy to verify that: ‘H(e’”) =H(E?)-H (e)=H(z)-H"(1/z")

Z=e!®

hint: find the convolution between h[n] and h*[-n]

1 1
1-2rcos(@—m)+r’ 1-2rcos(@0+a)+7r’

H(ejﬁ)).H*(ejﬁ)) —

we have then: 2010g‘H(ef“’)

= —lOlog[l—Zrcos(@ —a))+r2J—1010g[1—2rcos(f9 +o)+r

2

As we conclude from the initial expression, phase is given by:

ZH(e’?) = arctan rsin(@—a)) —arctan rsin(¢9+m)
1-rcos(0 —m) 1-rcos(@+ o)
d
) ) ) d d_{f(fd)}
and the group delay, recalling in the meantime that: —{arctan f(@0)}=92 —
do 1+[f ()]

rz—rcos(ﬁ—co) B rz—rcos(ﬁ—i-(u)
1—21%(:05(19—(0)+r2 1—2;*(:03(6’+a))+r2

is given by: 7(») =—di{4H(efw)}:_
w

10




Basic concepts

Magnitude of the Frequency Response

0 0.5 1 1.5 2
Frequency / T

title (‘Phase of the Frequency Response');
figure (3)

plot (W/pi,grpdelay(b,a,N, "whole'));
ylabel (‘Group Delay in Samples');

xlabel ('Frequency / \pi');

title (‘Group Delay'):

Group Delay

15
IH(e)|
The representation presumes r=0.8 and
6=n/3. The three figures have been obtained
using the following Matlab code:
i teta=pi/3.0; erre=0.8; N=512; i 5 S . = A
ib=l.O; a=[1l -2*erre*cos(teta) erre.”2]; | ' Frequency / T -
i [H,W] = FREQZ (b,a,N, 'whole'"); : Phase of the Frequency Response
r figure (1) i 04 ' ' . .
i plot (W/pi,20*1logl0 (abs (H))) ; i 0.3 ZH(el®)
» ylabel ('Gain (dB) ') ! 0.2
' xlabel (‘Frequency / \pi'); ! 501
E title('Magnitude of the Frequency Response'); i 8 0
» figure (2) i * o4}
| plot (W/pi,angle (H) /pi); : .02}
1 ylabel (‘Phase / \pi'); : 03t
' xlabel ('Frequency / \pi'); i 64

NOTE: although it was not necessary in this example, it is
usual to wrap the phase representation considering the
fundamental period [-7t, =[

Group Delay in samples

Fundamentals of Signal Processing, week 6
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0 0.5 1 1.5 2 1 1
© AJF Frequency / T
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The inverse system is:

JA

H(z)=1-2rcos@Z" +r’Z> , |Z|>0

A
\ 4

hn]=d8[n]—2rcos@ o[n—1]+r>6[n—2]

Fundamentals of Signal Processing, week 6

FEUP-DEEC, October 20-22, 2025

whose frequency response is given by:

, = (1 — re‘f(g‘(”)XI — re‘f(g“’“”)

z=e’*

H,(e'")=H,(2)

since it is the reciprocal of the system seen previously, its log magnitude is given
by:

2010g‘Hj(ej”)

=20log

H(e’)

- —ZOlog‘H(ef”)

thus, we conclude that the dB gain of the inverse function corresponds to the
attenuation (=negative gain) of function H(ei®). Therefore, the plot of the gain of
the inverse function corresponds to the symmetric (on the log domain) of that of
the initial system (i.e. the ordinate scale is just made symmetric).

We conclude easily that the same happens regarding the phase and group delay
representations (in Matlab it is sufficient to switch vectors ‘a’ and ‘b’).

© AJF 12
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All-pass systems

* Definition

— are systems whose frequency response magnitude does not depend on . The
basic Z function of a first-order all-pass system may be presented as:

‘e . _ . 2 a 1
It can be verified that |Her(€)|=1: ;7 (o). 1 1/ 2y £ —% Z=a :1+|a\7 aZ-dal _
I—aZ' 1-a'Z 1+|d —a'Z-al"

— the main feature of a first-order all-pass system is that once the pole position is
known, the position of the zero is at the reciprocal-conjugate of that of the pole:

. Sm

,
,
.
,
,
2
.
.
,
.
,
.
.
.

— in general, an all-pass system may aggregate an arbitrary number of first-order all-pass
functions.

0 1/a"

NOTE: we admit here |a|<1]

A 4

Re

—> all-pass systems have various applications such as to compensate phase distortions

introduced by other systems.
© AJF introduced by y 13
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 Example

— if an all-pass system has a real-valued impulse response, its poles and zeroes
are either real or occur in complex conjugate pairs; e.g. (admitting causality):

oo llza Z'-a o ~(a+a )2 +Z7 2l
T 1-az -7 1—(a+a)Z ' +dfZ?

taking, for example a=0.8e/™3, the transfer function results:

0.64-08Z27"'+77
H, (2)= . — . |Z]>08
1-0.827 +0.64Z
which gives rise to the
. 1
represented diagrams. o
g0 IHpr(e)]
O]
A -1 1
0 0.5 1 1.5 2
1 .
1 &
. ()] .
< g 0 ZHpr (e))
. g i
,/” _1 1
4 0 0.5 1 1.5 2
2 10 .
a
&
& s (o)
3
0 ' :
0 0.5 1 1.5 2
Frequency/n 14

© AJF
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* Definition

— a stable and causal discrete-time system, H(z), has all of its poles
inside the unit circumference

* this statement does not constrain the zeroes

— in certain cases, it is useful to request that the inverse system
H.(z)=1/H(z) is also stable and causal

« as the poles of H(z) are the zeroes of H(z), this request implies that H(z) has
all of its zeros and poles inside the unit circumference

— a minimum-phase system complies with these conditions, i.e. either its
transfer function or that if its inverse, are causal and stable

— a causal and stable discrete-time system that is characterized by a
rational transfer function may always be expressed as: |H(z)=H,,(2)-H, (2)
where H_. (z) represents a minimum phase system, and Hp(z)
represents one or more first-order all-pass systems.

Fundamentals of Signal Processing, week 6

FEUP-DEEC, October 20-22, 2025
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— the previous statement also means that any causal and stable system
may be converted into a minimum phase system without any
modification to its frequency response magnitude, by “reflecting” the
zeroes outside the unit circumference to the reciprocal conjugate
positions (inside the unit circle), using first-order all-pass filters:

Hmin(z) = H(Z)'HPT(Z)

 Example

— considering a zero-pole diagram including four poles at z=0 and four zeroes at
Z,=0.9ei06r 77 7,=1.25e08 7.° find all stable and causal systems having real
impulse response and showing the same frequency response magnitude,
identify also which one has a stable inverse

(z-2,)z-7,)z-2,)z-2;)

A: the first system is: H\(z) = 5

Considering the distribution of poles and zeros
we conclude that all systems are FIR and that,
in order to be causal, only zero or negative powers

of Z may exist in the transfer function. 16
© AJF
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« Example (cont.)

— we also conclude that considering the real impulse response requirement, three
other systems exist that have the same frequency response magnitude as H,(z),
given that their transfer function results from H,(z) by “reflecting” (in the sense of
reciprocal conjugate) zeroes (in fact pairs of zeroes, why ? ), either to the inside, or to
the outside of the unit circumference.

Fundamentals of Signal Processing, week 6

Q

S

gﬁ

S

f.g = = =

8 HI(Z) ‘Hlnm(z):Hl(z)HPTI(z)‘ Hmax(z):Hl(z)HPTO(Z) H2(Z):HI(Z)HPTO(Z)HPTI(Z)
g

=

A Z'-a" Z'-a Z'-a" Z'-a

o where: g ()= : a=7 H - . -7
[_L:Té pro(2) l—aZ ' 1—aZ7' 0 pn(z) a7 1—a7' a 1

© AJF 17
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« Example (cont.)

— the minimum phase system H_,;,(z) has transfer function:

(z-2z,)\z-7;)z-1/2,)\2-1/Z)

Hmin(z):|Zl‘2 Z4

this is the only system whose inverse is also stable.

— the maximum phase system H, ,.(z) has transfer function:

z2-1/2,)\z2-1/2;\2-2,)\z-Z;)
Z4

Hmax (:) = |ZO|2 (

— and, finally, the other possible alternative H,(z) has transfer function:

2-1z\2-1/Z;)z-1/2)z-1/Z})
74

H,(z)= ’20’2’21’2 (

NOTE: we will see later that in the case of FIR systems, as in this example, there is
a precise relation between the minimum-phase system and the maximum-phase
system.

Fundamentals of Signal Processing, week 6
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* Properties of minimum-phase systems

— since a non minimum-phase system is obtained from a minimum-phase
system by adding all-pass filters whose phase is always negative for
O<w<mr, when zeroes are “reflected” from the inside to the outside of the
unit circumference, we conclude that among all systems having the
same frequency response magnitude, the minimum-phase system
shows a “less negative” phase,

— from the previous it results that the group delay is minimized in the
case of a minimum phase system,

— on the other hand, it also results from the previous property that the
energy of the impulse response of a causal minimum-phase system is
more concentrated near n=0 (i.e. minimum energy delay)

QUESTION: how are these properties adapted to the case of maximum-phase
systems ?

NOTE: the concept of minimum-phase and maximum-phase is valid either for FIR
or [IR systems

Fundamentals of Signal Processing, week 6

FEUP-DEEC, October 20-22, 2025
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* Definition

— systems whose frequency response has the form:

—joo
e

H(e™)=|H(e™)

, o<z

where a is a quantity (integer or non-integer) denoting the constant group
delay of the system (i.e. all frequencies are equally delayed), in other
words, the phase of H(el®) is a linear function of w:

ZH(e'") = -oa

However, in general terms, we define generalized linear-phase system, a
system which may be expressed as:

H(e™)= A(e’)e /P | ‘a)‘<ﬂ

where A(el®) is a real function (it may be positive or negative) and o and f are
constants making that

ZH(?)= B—-oa
is a linear function of .

© AJF 20
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Thus, independently of the sudden “jumps” the phase function may
exhibit, the group delay is always a constant:

() = —%{4}1(@“)}: a

In the following, we will consider that 2a is always an integer. In this case,
it can be shown [Oppenheim, section 5.7.1-5.7.2] that the requirement of
generalized linear-phase implies that a real-valued h[n] has a form of
symmetry around o

« even symmetry: h[2a-n] = h[n]
« odd symmetry:  h[2a-n] = -h[n]

In order to simplify the discussion, in the following we presume causality
which, when combined with the fact that a is finite, implies that the
length of the impulse response is also finite (i.e. the system is FIR).
Considering that the length may be even of odd and that symmetry may
also be even or odd, it results that there are four types of linear phase

systems (or filters).
© AJF 21
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N-1
H(ej(u) — Zh[n]efj(m — A(ej(u)efj((oaf,ﬁ’)
n=0 -

real-valued

* Type 1 FIR linear-phase systems

— N is odd
— h[n] is symmetric ... h[n] = h[N-1-n]

example: N=5

h[n] A(ej(”) 4

— particularities:

v

n -T 0 i 2n 3n 47 (0]

 B=0orp=n

* a=(N-1)/2 (integer)

« A(e®)is even around =0 .. A(el®) = A(el®)

« A(e®)is even around o=t .. A(eil™®)) = A(ei(ro))

« A(e®) is periodic with period 2n . A(el@*2m) = A(el®)

© AJF 22
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N-1
H(ejfa) — Zh[n]e—j(an — A(ej(-) )e—j(ma—,ﬁ‘)
n=0 \_\I_I

+ Type 2 FIR linear-phase systems real-valued

— N is even
— h[n] is symmetric ... h[n] = h[N-1-n]

example: N=4

h[n] A(ej(”) 4

v 1 2 3 q M 0 n o 3n PR
— particularities:

 B=0orp=n

* a=(N-1)/2 (integer +1/2)

« A(e®)is even around ®=0 .. A(el®) = A(ei®)

« A(e®)is odd around o=n .. A(ellr*©)) = -A(ei(r-©))

« A(el®) is periodic with period 4n - Aell@*4n)) = A(elo)

© AJF
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N-1
H(ej(a) — Zh[n]e—jmn — A(ej(a)e—j((aa—ﬁ)
n=0 \_Y_}

« Type 3 FIR linear-phase systems real-valued

— N is odd
— h[n] is anti-symmetric .. h[n] = -h[N-1-n]

example: N=5

h[n] A(@®)

— particularities:
* B=n/2 or 3=3n/2
* a=(N-1)/2 (integer)
« A(e®)is odd around =0 .. A(el®) = -A(ei®)
« A(e®)is odd around o=n .. A(el(™®)) = -A(ei(ro))

« A(e®) is periodic with period 2n . A(el@*2m) = A(el®)
© AJF
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N-1
H(ej(n)) — Zh[n]e—j(aﬂ — A(ej(-))e—j((-)a—ﬁ)
n=0 \_Y_I

« Type 4 FIR linear-phase systems real-valued

— N is even
— h[n] is anti-symmetric .. h[n] = -h[N-1-n]

example: N=4

h[n] INCA!

| \/\
| l n -n)\/O T 2n\/\3i\/ln ®

— particularities:
* B=n/2 or B=3n/2
* a=(N-1)/2 (integer +1/2)
« A(e®)is odd around =0 .. A(el®) = -A(ei®)
« A(el®) is even around o=n .. A(el™)) = A(ellr)
« A(el®) is periodic with period 4x - Aell@*4n)) = A(elo) 75

© AJF
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e summary
from the previous it results that:

— types 3 and 4 are not suitable to realize low-pass filters
« because A(el%)=0 (i.e. a zero exists at Z=1)
— types 2 and 3 are not suitable to realize high-pass filters

« because A(ei")=0 (i.e. a zero exists at Z=-1)

— types 3 and 4 give rise to a constant phase shift (n/2 or -n/2)

* which is desirable in the case of differentiators or Hilbert transformers

© AJF
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« Locations of zeroes for FIR linear-phase filters

— It can be shown [Oppenheim, section 5.7.3] that if Z,=rel® is a zero of H(z),
where H(z) is a linear-phase system having a real-valued impulse
response, then Z, belongs to a set of 4 zeroes (having reciprocal
conjugate relations): Z,,Z, , 1/ Z,,e 1/ Zy

— particular cases:
* if Z, is on the unit circumference, then the group is limited to 2 zeroes
« if Z, is real, then the group is limited to 2 zeroes

« if Z,is real and is on the unit circumference, then the group is limited to a
single zero

Example: distribution of
the zeroes pertaining to

Question 1: what is the
multiplicity of the pole at

a linear-phase FIR system the origin ?

Question 2: what is the
type of this FIR system ?

© AIF 27
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« Relation between linear, minimum and maximum phase FIR
systems

— If H,;,(z) is an FIR minimum-phase system, the corresponding
maximum phase system is readily obtained using:

H. .x(2)=Z*H_ ;. (z"), where L is the order of H(z)

— Question 1: what is the interpretation of this relation in the n domain,
i.e. considering h.,,[n] and h,[n] ?

— Question 2: what is the result of the following Z product:
H(Z)szin(Z)'Hmax(Z)

?

© AJF



