Arm Education

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2025/2026 — 1%t semester

Week06, 20 Oct 2025
Objectives:
-understanding the DMA mechanism and frame-based signal processing,

-evaluating the DMA operation and concluding on its advantages and differences to
interrupt-based transfer of individual samples,

-evaluating the graphical representation capabilities of the STM32F746G board and LCD.

DSP Education Kit

LAB 5

DMA operation and LCD graphical
capabilities

Issue 1.0

Arm Education

Contents
1 INtroducCtion.....cciiiiiiieiiiiiiiiintrcrre e 1
1.1 LD OVEIVIBW .ttt ettt e bt st e st e s bt e e sab e e e be e e snbeesreeenaneas 1
P2 =Y [11 1= 4 U= o 1
3 DMA-Based Example Programcccceiiiiiiiiiiniiiiiininiininiins 1
3.11 Frame Dased PrOCESSING....ccciiiie it ccteee ettt e et e e et e e e ate e e e seateeeesenbaeeesenraeaeaans 3
3.1.2 stm32f7_wm8994 _init() DMA OPErationccccuieeeeiiiieeeiiiee e cieee et e e e 3
3.13 StM32f7_l00p_dma.C OPerationccoceeiiiieiiie et 3
3.2 Experiments with stm32f7 loop dma FUNSP.C.uiiiiiicnicieieenieie e 5
3.3 Representing time and frequency on the STM32F746G board.........cccoceeeeeiiieeeciieeeeeciieeeens 8
3.4 Hearing the effect of the DMA buffer delays [optional].......cccceoeiiiiiiciiiei e, 12
S 00T 1] (13 o T N 13

5 AdditioNal ReferENCES...c.cuveieieirreteieirerecetesrereressssssesssssssssssssssesssssassssssans 14

Arm Education

1 Introduction

1.1 Lab overview

This laboratory experiment motivates DMA-based processing as an alternative to interrupt-based
individual audio samples transfer, motivates to the low input-output delay (i.e. low latency) of the
A/D and D/A operation on the STM32F746G board, and motivates to the graphical representation
capabilities of the STM32F746G board and LCD.

2 Requirements

To carry out this lab, you will need:

e An STM32F746G Discovery board

e A PCrunning Keil MDK-Arm

e An oscilloscope

e Suitable connecting cables

e Anaudio frequency signal generator

e Optional: External microphone, although you can also use the microphones on the board
e Stereo headphones

3 DMA-Based Example Program

Direct Memory Access (DMA) is a method in which a hardware component of a computer gains
access to the Memory Bus and controls the transfer of data (in an autonomous way). DMA
controllers can be configured to handle data transfers between memories, memory to peripherals,
and vice versa, enabling the processor to deal with other processes. Essentially, the main benefit of
this method is to reduce strain on the CPU. This concept is suggested by the block diagram in Figure
1.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 1

Arm Education

| CPU /0
Bus

|
|

DMA Controller

Figure 1: Block diagram representation DMA-Based /0

Program stm32£f7 loop dma.c makes use of a “ping-pong” mode of multi-buffering possible on
the STM32F746G to implement frame-based processing, instead of sample-based interrupt
processing, as it was the case in previous laboratory experiments. The schematic representation of

the DMA operation is represented in Figure 2.

DMA
| PING IN | PING ouT
SAIl _T =< > | [SAI
input / N\ > N\ » output
dio M audio
™ -] x s .
| PONG IN g § [ponG out :
v rx_buffer‘_proc tx_bl'.lffer_proc H
RX_buffer full = {0, 1} TX_buffer empty = {0, 1}
rx_buffer proc = {PING, PONG} tx buffer proc = {PING, PONG}
+—|¢ 4’{7)
DMA DSP algorithm DMA
acts here autonomous processing

autonomous processing

Figure 2: Schematic representation of the DMA operation in connection with stm32£7 loop dma.c

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 2

Arm Education

3.1.1 Frame based processing

Rather than processing one sample at a time, as in previous laboratory experiments, signal
processing algorithms may also be applied to blocks, or frames, of samples. This is called frame-
based processing, or block-based processing. This is especially important in real-time signal
processing and, therefore, requires a different approach to that used for input and output in most of
the previous lab experiments. This approach requires the implementation of buffering, as it is
illustrated in Figure 2, and to process blocks of samples, using buffer-based I/O interrupt, rather
single sample-based 1/0 interrupt (as in previous laboratory experiments). Thus, DMA-based 1/0 is
more suitable for frame-based processing and will be used in this lab experiment (and also in future
lab experiments).

3.1.2 stm32f7_wma8994_init() DMA operation [this is imported from original ARM lab 5 -FFT]

The DMA in the STM32F746G is organized into unidirectional streams, two of which are used for this
application. In function stm32£f7 wm8994 init (), DMA stream 7 is configured to make DMA
transfers between the Synchronous Audio Interface (SAl) peripheral and input buffers (arrays) in
memory (alternately PING IN and PONG IN). It generates an interrupt when a transfer of

PING PONG BUFFER SIZE 32-bit words has completed. Each 32-bit word comprises two 16-bit
sample values (LEFT and RIGHT channels). The value PING PONG BUFFER_ SIZE is therefore
equivalent to the number of sampling instants represented by one DMA transfer. The value of

PING PONG BUFFER_SIZE isdefinedinfile stm32f7 wm8994 init.h.

DMA stream 3 is configured to make DMA transfers between output buffers in memory (alternately
PING OUT and PONG_OUT) and the SAl peripheral. It too generates an interrupt when a transfer of
PING PONG BUFFER SIZE 32-bit words has completed.

Just for information purposes (you do not need to understand this for this laboratory experiment),
four different interrupt service routines (functions) are involved in the DMA ping-pong buffering
process. BSP AUDIO OUT TransferComplete CallBack(),

BSP AUDIO IN TransferComplete CallBack(),

BSP AUDIO OUT TransferCompleteMl CallBack(), and

BSP AUDIO IN TransferCompleteMl CallBack/(), definedin file

stm32f7 wm8994 init.c, are associated with completion of DMA transfers from array
PING OUT to the SAl peripheral, from the SAl peripheral to array PING IN, from array
PONG_OUT to the SAl peripheral, and from the SAl peripheral to array PONG IN, respectively.

3.1.3 stm32f7_loop_dma.c operation [this is imported from original ARM lab 5 -FFT]

The actions carried out in the routines mentioned in Section 3.1.2 are simply to toggle the values of
variables rx_buffer proc and tx buffer proc between PING and PONG, and to set
flags RX buffer fullandTX buffer empty, asitissuggested in Figure 2. Switching
between buffers PING IN, PONG OUT and PING OUT and PONG_OUT in the DMA streams is
handled automatically by the DMA multi-buffering mechanism.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 3

Arm Education

The stm32f7 loop dma.c Ccodeis listed next.

// stm32f7_loop dma.c

#include "stm32f7 wm8994 init.h"
#include "stm32f7_display.h"

#define SOURCE_FILE NAME "stm32f7_ loop_dma.c"

extern volatile int32_t TX buffer_empty; // these may not need to be int32_t
extern volatile int32_t RX_buffer_full; // they were extern volatile intl6_t
in F4 version

extern intl6_t rx_buffer_proc, tx_buffer_proc; // will be assigned token
values PING or PONG

void process buffer(void) // this function processes one DMA transfer block
worth of data
{

int i;

intle_t *rx_buf, *tx_ buf;

if (rx_buffer_proc == PING) {rx_buf
else {rx_buf = (intl6_t *)PONG_IN;}
if (tx_buffer proc == PING) {tx_buf
else {tx buf = (intl6_t *)PONG_OUT;}

(int16_t *)PING_IN;}

(int16_t *)PING_OUT;}

for (i=@ ; i<(PING_PONG_BUFFER_SIZE) ; i++)
{
*tx_buf++
*tx_buf++

}

RX_buffer_full = 0;
TX buffer _empty = 0;
}

*rx_buf++; // one sample regarding the LEFT channel
*rx_buf++; // one sample regarding the RIGHT channel

int main(void)
{
stm32f7_wm8994 init(AUDIO FREQUENCY 48K,
I0_METHOD_DMA,
INPUT_DEVICE_INPUT_LINE 1,
OUTPUT_DEVICE_HEADPHONE,
WM8994 HP_OUT_ ANALOG_GAIN_ DB,
WM8994 LINE_IN_GAIN_ DB,
WM8994 DMIC_GAIN_9DB,
SOURCE_FILE_NAME,
NOGRAPH) ;
while(1)
{
while(!(RX_buffer_full && TX buffer_empty)){}
process buffer();
}
}

Figure 3: Listing of program stm32f7 loop dma.c

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 4

Arm Education

Function main () waits until both RX buffer full and TX buffer empty flagsare set,
that is, until both DMA transfers have completed, before calling function process buffer().In
program stm32f7 loop dma.c, function process buffer () simply copies the contents of
the most recently filled input buffer (PING IN or PONG_IN) to the most recently emptied output
buffer (PING_OUT or PONG_OUT), according to the values of variables rx buffer procand
tx buffer proc.Ingeneral, frame-based processing will be carried out in function

process buffer () using the contents of the most recently filled input buffer as input, and
writing output sample values to the most recently emptied output buffer.

DMA transfers will complete, and function process buffer () will be called every

PING PONG BUFFER SIZE samplinginstants and, therefore, any processing must be completed
within PING PONG BUFFER SIZE /fs seconds (fs represents the sampling frequency), that is, before
the next DMA transfer completion.

The expected delay between input and output signalsis PING PONG_BUFFER SIZE*2/fs
seconds.

3.2 Experiments with stm32f7 loop dma FunSP.c

In this l[ab experiment, we will use the modified main () project file that is named
stm32f7 loop dma FunSP.c and thatisavailable on the Moodle platform. Its C code is listed
next.

// stm32f7_loop _dma_FunSP.c

#include "stm32f7 wm8994 init.h"
#include "stm32f7 _display.h"

#define SOURCE_FILE_NAME "stm32f7_loop_dma_FunSP.c"

extern volatile int32_t TX buffer_empty; // these may not need to be int32 t
extern volatile int32_t RX_buffer_full; // they were extern volatile intl6_t
in F4 version

extern intl6_t rx_buffer_proc, tx_buffer_proc; // will be assigned token
values PING or PONG

void process_buffer(void) // this function processes one DMA transfer block
worth of data
{

int i;

intle_t *rx_buf, *tx_ buf;

if (rx_buffer_proc == PING) {rx_buf
else {rx_buf = (intl6_t *)PONG_IN;}
if (tx_buffer proc == PING) {tx_buf
else {tx_buf = (intl6_t *)PONG_OUT;}

(int16_t *)PING_IN;}

(int16_t *)PING_OUT;}

for (i=0 ; i<(PING_PONG_BUFFER_SIZE) ; i++)
{

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 5

Arm Education

if ((i%1) == @) // either use (i%l) or (i%2)
{
*tx_buf++
*tx_buf++

}

else

{

*rx_buf++;
*rx_buf++;

*tx_buf++
*tx_buf++

(-1) * *rx_buf++;
(-1) * *rx_buf++;

}

RX_buffer full = 0;
TX buffer_empty = 0;
}

int main(void)
{
stm32f7_wm8994 init(AUDIO_FREQUENCY 48K,
I0_METHOD_DMA,
INPUT_DEVICE_INPUT LINE_ 1,
OUTPUT_DEVICE_HEADPHONE,
WM8994 HP_OUT ANALOG_GAIN_ DB,
WM8994 LINE_IN_GAIN DB,
WM8994 DMIC_GAIN_9DB,
SOURCE_FILE_NAME,
NOGRAPH) ;
while(1)
{
while(!(RX_buffer_ full && TX buffer empty)){}
process_buffer();
}
}

Figure 4: Listing of program stm32f7 loop dma FunSP.c

The Ccode stm32f7 loop dma FunSP.c justaddsasimple modification to the original code
stm32f7 loop dma.c.Based on this code, take a moment to identify what the differences are.

Question: what is the sampling frequency that this code specifies ? What is the Nyquist frequency ?

After unzipping it, take the stm32£f7 loop dma FunSP.c file to the “src” directory that is
located under folder:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\

Now, proceed as usual to start the Keil MDK-Arm development environment (uVision) and to replace
the existingmain () file in the existing project by the new main () file thatis
stm32f7 loop dma FunSP.c

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 6

Arm Education

Remember that the directory where you can find the DSP_Education_Kit.uvprojx project
file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your
convenience, this link is also available on a TXT file on Moodle.

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting
the debugger) and, then, to run the code.

Set the function generator to generate a sine wave having 5 Vpp and 1000 Hz. Using a “T” and a
BNC-BNC cable, take the output of the function generator to CHAN1 of the oscilloscope.

As usual, connect the output of the sinusoidal signal generator (i.e. the function generator) to the
(LEFT channel of the) LINE IN socket on the Discovery board (Remember: make sure that you use the
adapter with the blue mini-jack whose interface board has a resistor divider. It is meant to protect
the analog input of the kit against excessive input voltage levels).

Then, using another BNC-BNC cable, take the LEFT channel of the STM32F746G LINE OUT output to
the CHAN2 input of the oscilloscope.

Using the oscilloscope SETTINGS button and menu, make sure that the Vpp and frequency of both
input and output signals are being measured in real-time.

Question 1: As you vary the input frequency between low frequencies and the Nyquist frequency,
what analog system is equivalent to the complete signal processing chain implemented on the
STM32F7 kit ?

Now, stop the kit operation, exit the debugger environment and, on the editor environment, change
the following line in the stm32f7 loop dma FunSP.c code:

if ((i%1) == 9)
so that it becomes:

if ((i%2) == o)

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting
the debugger), and then to run the code.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 7

Arm Education

As you increase the frequency of the input sinusoid, note the real-time measurements of the
oscilloscope and find the sum of two frequencies: the frequency measured from the sinusoid at the
input of the STM32F7 kit, and the frequency measured from the sinusoid at its output.

Question 2: When the input frequency is 4 kHz, what is the output frequency ? When the input
frequency is 12 kHz, what is the output frequency ? When the input frequency is 20 kHz, what is the
output frequency ? How do you explain this behavior considering the implication of the above code
modification (i.e., by replacing (i%1) by (i%2))?

Hint: the signal modification discussed here, as well as its frequency-domain impact, is discussed in the context
of exercise 2 of the set of exercises proposed for week5 (13-17 Oct), and whose explanation on video is
available on Moodle.

3.3 Representing time and frequency on the STM32F746G board
In this part of the lab experiment, we use an extended version of the code listed in Section 3.1.3 in
the sense that time or frequency representations are displayed on the STM32F746G board LCD.

Now, proceed to replace the existingmain () file in the STM32F746G project by the new main ()
thatis stm32f7 loop graph dma.c and thatis available on the usual “src” directory.

The stm32f7 loop graph dma.c codeis listed next.

// stm32f7_loop_graph_dma.c

#include "stm32f7_wm8994 init.h"
#include "stm32f7_display.h"

#define PLOTBUFSIZE 128
#define BLOCK SIZE 1
#define SOURCE_FILE_NAME "stm32f7_loop_graph_dma.c"

extern volatile int32_t TX buffer_empty; // these may not need to be int32_t
extern volatile int32_t RX_buffer_full; // they were extern volatile intl6_t
in F4 version

extern intl6_t rx_buffer_proc, tx_buffer_proc; // will be assigned token
values PING or PONG

float32_t x[PING_PONG_BUFFER_SIZE];

float32_t cmplx_buf[2*PING_PONG_BUFFER_SIZE];
float32_t outbuffer[PING_PONG BUFFER_SIZE] = { @.of };

void process_buffer(void) // this function processes one DMA transfer block of
data
{

int i;

intl6_t *rx_buf, *tx_ buf;

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 8

Arm Education

if (rx_buffer _proc == PING) {rx_buf
else {rx_buf = (intl6_t *)PONG_IN;}
if (tx_buffer proc == PING) {tx_buf
else {tx _buf = (intl6_t *)PONG_OUT;}

(int16_t *)PING_IN;}

(int16_t *)PING_OUT;}

for (i=0 ; i<(PING_PONG_BUFFER_SIZE) ; i++)
{

x[i] = (float32_t)(*rx_buf);

*tx_buf++ = *rx_buf++;

*tx_buf++ = *rx_buf++;

cmplx _buf[i*2] = x[i]; // real part

cmplx buf[(i*2)+1] = 0.0; // imaginary part
}

RX_buffer full = 0;
TX buffer_empty = 0;
}

int main(void)
{
int i;
int button = 0;

stm32f7_wm8994 init(AUDIO_ FREQUENCY_8K,
IO _METHOD_DMA,
INPUT_DEVICE_DIGITAL_MICROPHONE_2,
OUTPUT_DEVICE_HEADPHONE,
WM8994 HP_OUT_ANALOG_GAIN_@DB,
WM8994 LINE_IN_GAIN_ODB,
WM8994 DMIC_GAIN_O9DB,
SOURCE_FILE_NAME,
GRAPH) ;
while(1)
{
while(!(RX_buffer_ full && TX buffer empty)){}
BSP_LED_On(LED1);
process buffer();
button = checkButtonFlag();
if(button == 1)
{
for(i=0; i<PING_PONG_BUFFER_SIZE; i++)
{
cmplx_buf[2*i] = x[i];
cmplx _buf[2*i + 1] = 0.0;
}
arm_cfft f32(&arm_cfft_sR _f32 len256, (float32 t *)(cmplx_buf), 0, 1);
arm_cmplx_mag f32((float32_t *)(cmplx_buf), (float32_t *)(outbuffer),
PING_PONG_BUFFER_SIZE);
plotLogFFT(outbuffer, PING_PONG_BUFFER_SIZE, LIVE);
}

else

{
}

plotWave(x, PLOTBUFSIZE, LIVE, ARRAY);

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 9

Arm Education

BSP_LED_Off(LED1);

}
}

Figure 5: Listing of program stm32f7 loop graph dma.c

Compile this new code, and download it to the STM32F746G board. Run program
stm32f7 loop graph dma.c and confirm that the input to the digital microphones (i.e. your
voice) is passed to the oscilloscope, or to the headphones if you happen to have a pair of these. A
major difference between previous programs and stm32f7 loop graph dma.cisthatthe
latter program plots the sample values it writes to the WM8994 DAC as a graph on the LCD. Pressing
the blue user pushbutton toggles between time-domain and frequency-domain representations of
those sample values.

Take a moment to observe the STM32F746G LCD graphical representations as you change your voice
signal (try to say a few sustained vowels).

Now, change the parameter INPUT DEVICE DIGITAL MICROPHONE 2 to

INPUT DEVICE INPUT LINE 1 and make sure that the sampling frequency is 8 kHz. Now, use
a signal generator to input a sinusoid of frequency 180 Hz (and 5 Vpp) to the LINE IN input
(Remember: make sure that you use the adapter with the blue mini-jack whose interface board has
a resistor divider. It is meant to protect the analog input of the kit against excessive input voltage
levels).

You should see graphs on the LCD similar to those shown in Figure 6.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 10

Arm Education

M Pos; 0,000

T (AT
M Zsﬁms CHT /7 460mV 27-Nov-21 03:42 188.000H:

27-Nov-21 0341 187.993Hz

i
I I\‘f‘”“\‘l‘\w I

Figure 6: Graphical representation of 180 Hz sinusoidal signal input to program
stm32f7 loop graph dma.cin the time-domain (figure o the left), and in the frequency domain (figure
on the right). Sampling frequency is 8 kHz

Question: how does the time and frequency representation look like as you change the input sine
wave frequency ?

Question 3: Considering that the length of the DMA buffers is 256 samples, what is the lowest
sinusoidal input wave whose graphical representation on the LCD screen of the STM32F7kit stands
still, i.e. the represented wave of the LCD screen of the STM32F7 kit does not glide to the left or right
of the screen ? Show the sinusoidal representation for that particular frequency (Note: you may
need to adjust the decimal part of the frequency).

Question 4: Now, consider higher frequencies of the sinusoidal input signal whose graphical
representation on the screen of the STM32F7 kit becomes again still. How is that those frequencies
relate to the lowest possible frequency identified in the previous question ?

Question 5: When the input sinusoid signal is such that it generates a still representation on the
STM32F7 kit LCD screen, toggle the graphical representation to the frequency-domain so that you
can see the spectral magnitude of the signal. Is this representation as expected ?

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 11

Arm Education

Question: for other “non-special” frequencies of the input sinusoid (as presumed in the previous
guestion), the magnitude spectrum becomes different from that observed under the conditions of
the previous question. How do you explain that ?

3.4 Hearing the effect of the DMA buffer delays [optional]

The DMA-based I/0 method introduces a delay in the signal path equal to two DMA transfer blocks,
or buffers, of samples. The number of sampling periods represented by one DMA transfer block is
determined by the value of PING PONG BUFFER_ SIZE, which is 256 samples, and is defined in
header file stm32f7 wm8994 init.h.

In this part of the lab experiment, we will use the stm32f7 loop dma.c Ccode in order to test
how audible the DMA buffering delay is when the STM32F746G board is running the
stm32f7 loop dma.c Ccode in real-time.

Program stm32f7 loop dma.c. has a similar functionality to program
stm32f7 loop intr.c except that it uses the DMA I/O, as opposed to interrupt-based.

Now, change this line in the code:
INPUT_DEVICE_INPUT_LINE 1,

to these two:
INPUT_DEVICE_DIGITAL_MICROPHONE_2,
//INPUT_DEVICE_INPUT LINE_1,

Now, proceed as usual to start the Keil MDK-Arm development environment (uVision) and to replace
the existingmain () file in that project by the new main () thatis stm32f7 loop dma.c

Remember that the directory where you can find the the DSP_Education Kit.uvprojx
project file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your
convenience, this link is also available on a TXT file on Moodle.

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting
the debugger), and then to run the code.

Listen to the LINE OUT output signal using headphones.

NOTE: Try to use headphones with a two-ring (stereo) mini-jack as it is illustrated in Figure 7. Three-ring mini-
jacks may not be appropriate as they include an addition microphone signal that the STM32F746G board does
not support.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 12

Arm Education

Figure 7: A two ring mini-jack (stereo) should be used.

Question: when you hear your own voice through the headphones (which is the signal input to the
STM32F746G digital microphones), is the delay between the moment you speak and the moment
you hear your voice audible ?

Now, change the sampling frequency first to 32 kHz, then to 16 kHz, and finally to 8 kHz. You can do
this by changing in the code the parameter AUDIO FREQUENCY 48K to AUDIO FREQUENCY 32K,
AUDIO FREQUENCY 16K,AUDIO FREQUENCY 8K, respectively. Remember that for each one of
these cases, you need to stop the STM32F746G board real-time operation, quit the debugger mode
and return to the editing mode, modify the C source code, compile, downloading it to the
STM32F746G board (by starting the debugger again), and then to run the code.

Question: For what sampling frequencies is the DAM buffering delay audible ? What is the
corresponding delay (in milliseconds) and how do you explain that it becomes audible after a certain
limit ?

4 Conclusions

At the end of this exercise, you should have become familiar with the DMA operation, with the
differences between interrupt-based transfer of audio samples, and DMA-based transfer of audio
samples, and their impact in terms of processing and processor load. The time-domain and
frequency-domain graphical representation on the STM32F746G LCD are very convenient features
that we will use in future lab experiments.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 13

Arm Education

5 Additional References

Link to Board information and resources:

https://www.st.com/en/evaluation-tools/32f746gdiscovery.html#overview

Using DMA controllers in STM Discovery boards:

https://www.st.com/content/ccc/resource/technical/document/application note/27/46/7c/ea/2d/
91/40/29/DM00046011.pdf/files/DM00046011.pdf/jcr:content/translations/en.DM00046011.pdf

For more details about DMA:

http://ciresl.colorado.edu/jimenez-group/QAMSResources/Docs/DMAFundamentals.pdf

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 14

