

BSC IN ELECTRICAL AND COMPUTER ENGINEERING

 AJF Week of November 10, 2025

L.EEC025 - FUNDAMENTALS OF SIGNAL PROCESSING

Academic year 2025-2026, week 8

P2P exercises

Topics: Peer-to-peer learning/teaching exercises on the analysis of a second-order system

Peer-to-peer learning/teaching (P2P L/A) exercises

Preliminary considerations

All four exercises indicated here involve the same second-order discrete-time system: a causal discrete-

time system that has two poles, one at � � ����, and another one at � � �����, and two zeros at � � 0.

Some of the challenges discussed here have been addressed already in past PL classes, or lectures.

In addition to a few Matlab functions we are already familiar with (roots(), zplane(),freqz(),

xcorr()), during this week we will use two other signal processing-related Matlab functions: impz()

and filter().

Regarding impz(): it computes the impulse response of a discrete-time system that is described by a

transfer function whose numerator coefficients are defined in a vector b, and whose denominator

coefficients are defined in a vector a. For example, if the transfer function is
	
��
�
��
�

	
�	/���
�
�	/���
�, then

the following Matlab code generates and displays 10 coefficients of the impulse response:

N=10; n=[0:N-1];

b=[1 2 3];

a=[1 1/2 1/3];

h=impz(b,a,N);

stem(n, h)

xlabel('n \rightarrow')

ylabel('Amplitude')

0 1 2 3 4 5 6 7 8 9

n

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d

e

 AJF

Regarding filter(): it implements a difference equation according to the transfer function

specification of a given discrete-time system. For example, if the transfer function is
	
��
�
��
�

	
�	/���
�
�	/���
�,

then the difference equation is implemented as ���� � ���� + 2��� � 1� + 3��� � 2� � 	
� ��� � 1� �

	
� ��� � 2�. As in the previous Matlab command, filter() takes as parameters the transfer function

numerator coefficients in vector b, and the transfer function denominator coefficients in vector a. In

addition, it also takes a third parameter that specifies the input sequence (e.g. in a vector x). Differently

from conv(), filter() delivers at the output a vector y that has the same length as the input vector

x. For example, if the input is ���� � ���� � ��� � 5�, then the following Matlab code generates and

displays 10 coefficients of the output sequence.

N=10; n=[0:N-1];

x=[ones(1,5) zeros(1,N-5)];

b=[1 2 3];

a=[1 1/2 1/3];

y=filter(b,a,x);

subplot(2,1,1)

stem(n, x)

ylabel('Amplitude')

subplot(2,1,2)

stem(n, y)

xlabel('n \rightarrow')

P2P Exercise 1

In this exercise, we specify the transfer function that describes our causal discrete-time system, obtain

its impulse response, and validate it numerically in Matlab.

a) As indicated above, our second-order and causal discrete-time system has two poles, one at

� � ����, and another one at � � �����, where � and � are real-valued, |�| < 1, and has two

zeros at � � 0. Obtain its transfer function and express it in a form containing real-valued

coefficients only. Obtain also the corresponding difference equation.

Note: the solution should be: ���� � ���� + 2� cos��� ��� � 1� � ����� � 2�
P2P assessment: 2pt /5 if explanation is clear and results are correct (both transfer function (1) and

difference equation (1))

b) Find a compact (real-valued) expression describing the impulse response of our system (and

explain that process to your colleagues). After that, complete and use the following Matlab

code to validate numerically your analytical result.

ALFA=0.925; BETA=0.275*pi;
b = please complete here
a= please complete here
N=50; n=[0:N-1].';
h=impz(b,a,N);
myh= please complete here
subplot(2,1,1)
stem(n, h)
ylabel('Amplitude')

0 1 2 3 4 5 6 7 8 9

n

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9
0

0.5

1

A
m

p
lit

u
d
e

 AJF

subplot(2,1,2)

stem(n, h-myh) % difference should be zero (i.e. < 10$	%)
xlabel('n \rightarrow')

Note: the solution should be: ℎ��� � '(

sin�+� sin,��� + 1�- ����
P2P assessment: 3pt /5 if explanation is clear and results are correct (both impulse response (2) and

Matlab (1))

P2P Exercise 2

In this exercise, we analyse the frequency response of the causal discrete-time system as specified above.

We obtain compact and real-valued expressions for the magnitude and phase and validate those

expression numerically in Matlab.

a) Find a compact (real-valued) expression describing the magnitude frequency response of

our second-order system. After that, complete and use the following Matlab code to overlap

(perfectly) its graphical representation to that delivered by the freqz() Matlab command.

grid=2*[0:1/512:1-1/512]; % NOTE: PI is not included here...
ALFA=0.925; BETA=0.275*pi;
b = please complete here
a= please complete here
[H, W]=freqz(b,a,512,'whole'); % 512 is default in Matlab, but is required

in Octave

figure(1)
plot(W/pi, abs(H)) % NOTE: W/pi is normalized, the range is [0, 2[
title('Frequency Response Magnitude')
pause
myabsH = please complete here
hold on
plot(grid, myabsH, 'm') % NOTE: grid is normalized, the range is [0, 2[
hold off

Note: the solution should be: ./,�01-. � 	
2�	$�' cos�1$+�
'���	$�' cos�1
+�
'��

P2P assessment: 3pt /5 if explanation is clear and results are correct (both frequency response (2) and

Matlab (1))

b) Find a compact (real-valued) expression describing the phase frequency response of our

second-order system. In addition to the above Matlab code, complete and use the following

code to overlap (perfectly) the graphical representation to that delivered by the freqz()

Matlab command.:

figure(2)
plot(W/pi, angle(H))
title('Frequency Response Phase')
pause
myPHASE = please complete here
hold on
plot(grid, myPHASE, 'm')
hold off

Note: the solution should be: ∠/,�01- � � tan�1 ' sin�1$+�
	$α cos�1$+� � tan�1 ' sin�1
+�

	$α cos�1
+�

P2P assessment: 2pt /5 if explanation is clear and results are correct (both phase response (1) and

Matlab (1))

 AJF

Extra P2P Exercise 3

In this exercise we evaluate how the frequency response of a discrete-time system affects (from system

input to system output) an infinite-length real-valued sine (or co-sine) function, and validate numerically

that evaluation in Matlab.

In a recent lecture, we have shown that complex exponentials are the eigenfunctions of linear and shift-

invariant (LSI) discrete-time systems. That is, if an LSI discrete-time system is characterized by the

impulse response ℎ���, and is excited by the input sequence ���� � ���80, then the output sequence is

���� � /,�019-���80
, where /,�019- � ∑ ℎ���+∞���∞ ����8<

1=80
 is the frequency response of the

LSI system when it is evaluated for 8 � 8%.

a) Show that, in general terms, if ���� � sin��8%�, or if ���� � cos��8%�, and if ℎ��� is

real-valued (i.e. if ℎ��� is complex-valued then the following is not true), then ���� �
./,�019-.sin >�8% + ∠/,�019-?, or ���� � ./,�019-.cos >�8% + ∠/,�019-?. These

results presume that we write /,�019- � ./,�019-.eA∠B,CDE9-, where ./,�019-. represents

the magnitude part of the frequency response of the system when it is evaluated for 8 � 8%,

and ∠/,�019- represents the phase part of the frequency response of the system when it is

evaluated for 8 � 8%.

b) Using as a baseline the Matlab code that is used in P2P Exercise 2, and assuming the LSI

discrete-time system specification as above, assume further that 8% � OMEGA0= 0.7404,

and use the following Matlab code to show that MAG=./,�019-., and PHI=∠/,�019-,
are as follows:

OMEGA0= 0.7404;
[H, W]=freqz(b,a,[0 OMEGA0]);
MAG=abs(H(2));
PHI=angle(H(2));
% do your confirm that MAG = 5.1418 ?
% do you confirm that PHI 0.2159 ?

c) Now, create a long sinusoidal sequence with 105 samples, obtain the (numerical) system

output using the Matlab command filter(), program your analytical solution, and check

the difference between numerical and analytical results using the following Matlab code:

N=1E5; n=[0:N-1];
xsine=sin(n*OMEGA0).'; % you may check that cos() also works
ysine=filter(b,a,xsine);
myysine= please complete here .'; % don’t forget transposition .'
plotrange=[1:300];
figure(3)
subplot(4,1,1)
plot(n(plotrange), xsine(plotrange))
title('INPUT')
subplot(4,1,2)
plot(n(plotrange), ysine(plotrange))
title('Output (numerical)')
subplot(4,1,3)
plot(n(plotrange), myysine(plotrange))
title('Output (analytical)')
subplot(4,1,4)
plot(n(plotrange), ysine(plotrange)-myysine(plotrange))

title('difference signal')

Note: you should obtain the following difference signal:

 AJF

How do you explain to your Colleagues that the first few samples are not zero ?

Extra P2P Exercise 4

In this exercise, we show that if the input sine wave that is specified in P2P Exercise 3 is contamined by

noise, at a certain SNR, it comes out of the system with an improved SNR. We find the theoretical gain

in SNR, and validate that result numerically in Matlab.

a) The following Matlab code (which is a continuation of the Matlab code in P2P Exercise 3)

generates noise with a uniform Probability Density Function (PDF) of the samples’

amplitudes, whose auto-correlation function that consists of an impulse and such that when

the noise is combined with the sine wave the resulting SNR is 10 dB.

SNR=10; MAXLAG=30;
a=sqrt(3)/(sqrt(2)*10.^(SNR/20));
xnoise=2*a*(rand(N,1)-0.5);
Ps=mean((abs(xsine)).^2);
Pn=mean((abs(xnoise)).^2);
10*log10(Ps/Pn)
% to confirm that rx[ell]=K*DELTA[ell]
[rx, lag]=xcorr(xnoise, MAXLAG);
rx=rx/length(xnoise);
figure(4)
stem(lag, rx)
xlabel('$$\ell$$ (samples)','Interpreter', 'Latex');
ylabel('$$r_{X}[\ell]$$','Interpreter', 'Latex'); pause

Explain to your Colleagues:

 if the auto-correlation function is such that it consists of an impulse, how do we call

this type of noise ? why ?

 the rationale that justifies that the above parameter “a” and that leads to a 10 dB

SNR

 why running this code multiple times generates a practical SNR that is not exactly

equal to, but is very close to, 10.0 dB.

b) The following Matlab code (which is a continuation of the above Matlab code) allows to

evaluate numerically the SNR of the signal after filtering:

ynoise=filter(b,a,xnoise);
Ps=mean((abs(ysine)).^2);
Pn=mean((abs(ynoise)).^2);
10*log10(Ps/Pn)

Running this piece of Matlab (plus the code in a)) reveals that the output SNR is an

improvement of the input SNR by about 6 dB. How do you explain that to your peers ?

c) [NOTE: this last question is more atypical than the previous ones, therefore, Student Ey

should receive contributions/help/suggestions from the remaining group Students]

We state here, without proof, that if the impulse response of our LSI system is ℎ���, and if

the input auto-correlation is FG�ℓ�, then the output auto-correlation is given by FI�ℓ� �
ℎ�ℓ� ∗ ℎ∗��ℓ� ∗ FG�ℓ�. If we just consider the noise part of the input signal, it was shown in

a) that FG�ℓ� � KL�ℓ�, where K is the average power of the input noise.

 AJF

(1) Show that K � MN_PNQ � R�

� , where a is the theoretical value that is specified in the

Matlab code of P2P Exercise 4 a) .

(2) Find the theoretical value of the average power of the output noise MN_STU � FI�0�
where FI�0� � ∑ |ℎ���|�
VN=$V MN_PNQ. This value may be conveniently computed

using the Parseval theorem in the Z-domain. Remember that, in this case, in the Z-

domain, the region of convergence consists of a ring, which means that when you

apply the contour line integral and, therefore, the residue theorem, only two poles

matter.

Note: the solution should be: MN_STU � 	
'�

	$'� ∙ 	
	$�'� cos��+�
'X MN_PNQ

(3) Confirm that your theoretical output SNR is easily computed as:

Ps=(MAG^2)/2;
Pn=(a^2)/3;
Pn=(1+ALFA^2)/(1-ALFA^2)*1/(1-

2*(ALFA^2)*cos(2*BETA)+ALFA^4)*Pn;
10*log10(Ps/Pn)
% = 16.1422 (and the input SNR is 10 dB)

Extra P2P Exercise 5

In this exercise, we look at the PDF of all signals of interest in these set of P2P exercises. Use the

following Matlab code to check the PDF of several signals:

 [H X]=hist(x,50); equalize=50/(max(x)-min(x));
bar(X, H/sum(H)*equalize, 0.5);
ylabel('PDF'); xlabel('x[n] amplitude'); pause

run this piece of code after setting x to different alternatives :

x=xnoise;
x=ynoise;
x=xsine;
x=ysine;
x=xnoise+xsine;
x=ynoise+ysine;

Can you anticipate what cases correspond to the following two plots ? And how do you explain their

different shapes ?

-1.5 -1 -0.5 0 0.5 1 1.5

x[n] amplitude

0

0.1

0.2

0.3

0.4

0.5

0.6

P
D

F

-8 -6 -4 -2 0 2 4 6 8

x[n] amplitude

0

0.05

0.1

0.15

P
D

F

