
  

BSC IN ELECTRICAL AND COMPUTER ENGINEERING 

 

 AJF   Week of November 10, 2025 

L.EEC025 - FUNDAMENTALS OF SIGNAL PROCESSING 

Academic year 2025-2026, week 8 

P2P exercises 

 

Topics: Peer-to-peer learning/teaching exercises on the analysis of a second-order system 

 

Peer-to-peer learning/teaching (P2P L/A) exercises 

 

Preliminary considerations 

All four exercises indicated here involve the same second-order discrete-time system: a causal discrete-

time system that has two poles, one at � � ����, and another one at � � �����, and two zeros at � � 0. 

Some of the challenges discussed here have been addressed already in past PL classes, or lectures. 

 

In addition to a few Matlab functions we are already familiar with (roots(), zplane(),freqz(), 

xcorr()), during this week we will use two other signal processing-related Matlab functions: impz() 

and filter(). 

 

Regarding impz(): it computes the impulse response of a discrete-time system that is described by a 

transfer function whose numerator coefficients are defined in a vector b, and whose denominator 

coefficients are defined in a vector a.  For example, if the transfer function is 
	
��
�
��
�

	
�	/���
�
�	/���
�, then 

the following Matlab code generates and displays 10 coefficients of the impulse response: 

N=10; n=[0:N-1]; 

b=[1 2 3]; 

a=[1 1/2 1/3]; 

h=impz(b,a,N); 

stem(n, h) 

xlabel('n \rightarrow') 

ylabel('Amplitude') 
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Regarding filter(): it implements a difference equation according to the transfer function 

specification of a given discrete-time system. For example, if the transfer function is 
	
��
�
��
�

	
�	/���
�
�	/���
�, 

then the difference equation is implemented as ���� � ���� + 2��� � 1� + 3��� � 2� � 	
� ��� � 1� �

	
� ��� � 2�. As in the previous Matlab command, filter() takes as parameters the transfer function 

numerator coefficients in vector b, and the transfer function denominator coefficients in vector a.  In 

addition, it also takes a third parameter that specifies the input sequence (e.g. in a vector x). Differently 

from conv(), filter() delivers at the output a vector y that has the same length as the input vector 

x. For example, if the input is ���� � ���� � ��� � 5�, then the following Matlab code generates and 

displays 10 coefficients of the output sequence. 

 

N=10; n=[0:N-1]; 

x=[ones(1,5) zeros(1,N-5)]; 

b=[1 2 3]; 

a=[1 1/2 1/3]; 

y=filter(b,a,x); 

subplot(2,1,1) 

stem(n, x) 

ylabel('Amplitude') 

subplot(2,1,2) 

stem(n, y) 

xlabel('n \rightarrow') 
 

 

  

P2P Exercise 1 

In this exercise, we specify the transfer function that describes our causal discrete-time system, obtain 

its impulse response, and validate it numerically in Matlab. 

a) As indicated above, our second-order and causal discrete-time system has two poles, one at 

� � ����, and another one at � � �����, where � and � are real-valued, |�| < 1, and has two 

zeros at � � 0. Obtain its transfer function and express it in a form containing real-valued 

coefficients only. Obtain also the corresponding difference equation. 

Note: the solution should be: ���� � ���� + 2� cos��� ��� � 1� � ����� � 2� 
P2P assessment: 2pt /5 if explanation is clear and results are correct (both transfer function (1) and 

difference equation (1) ) 

 

b) Find a compact (real-valued) expression describing the impulse response of our system (and 

explain that process to your colleagues). After that, complete and use the following Matlab 

code to validate numerically your analytical result. 

ALFA=0.925; BETA=0.275*pi;  
b = please complete here 
a= please complete here 
N=50; n=[0:N-1].'; 
h=impz(b,a,N); 
myh= please complete here 
subplot(2,1,1) 
stem(n, h) 
ylabel('Amplitude') 
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subplot(2,1,2) 

stem(n, h-myh) % difference should be zero (i.e. < 10$	%) 
xlabel('n \rightarrow') 

 

Note: the solution should be: ℎ��� � '(

sin�+� sin,��� + 1�- ���� 
P2P assessment: 3pt /5 if explanation is clear and results are correct (both impulse response (2) and 

Matlab (1) ) 

 

 

P2P Exercise 2 

In this exercise, we analyse the frequency response of the causal discrete-time system as specified above. 

We obtain compact and real-valued expressions for the magnitude and phase and validate those 

expression numerically in Matlab. 

a) Find a compact (real-valued) expression describing the magnitude frequency response of 

our second-order system. After that, complete and use the following Matlab code to overlap 

(perfectly) its graphical representation to that delivered by the freqz() Matlab command. 

grid=2*[0:1/512:1-1/512]; % NOTE: PI is not included here... 
ALFA=0.925; BETA=0.275*pi;  
b = please complete here 
a= please complete here 
[H, W]=freqz(b,a,512,'whole'); % 512 is default in Matlab, but is required 

in Octave 

figure(1) 
plot(W/pi, abs(H)) % NOTE: W/pi is normalized, the range is [0, 2[ 
title('Frequency Response Magnitude') 
pause 
myabsH = please complete here 
hold on 
plot(grid, myabsH, 'm') % NOTE: grid is normalized, the range is [0, 2[ 
hold off 

Note: the solution should be: ./,�01-. � 	
2�	$�' cos�1$+�
'���	$�' cos�1
+�
'�� 

P2P assessment: 3pt /5 if explanation is clear and results are correct (both frequency response (2) and 

Matlab (1) ) 

 

b) Find a compact (real-valued) expression describing the phase frequency response of our 

second-order system. In addition to the above Matlab code, complete and use the following 

code to overlap (perfectly) the graphical representation to that delivered by the freqz() 

Matlab command.: 

figure(2) 
plot(W/pi, angle(H)) 
title('Frequency Response Phase') 
pause 
myPHASE = please complete here 
hold on 
plot(grid, myPHASE, 'm') 
hold off 

Note: the solution should be: ∠/,�01- � � tan�1 ' sin�1$+�
	$α cos�1$+� � tan�1 ' sin�1
+�

	$α cos�1
+� 

P2P assessment: 2pt /5 if explanation is clear and results are correct (both phase response (1) and 

Matlab (1) ) 

 

 



 AJF  

Extra P2P Exercise 3 

In this exercise we evaluate how the frequency response of a discrete-time system affects (from system 

input to system output) an infinite-length real-valued sine (or co-sine) function, and validate numerically 

that evaluation in Matlab. 

In a recent lecture, we have shown that complex exponentials are the eigenfunctions of linear and shift-

invariant (LSI) discrete-time systems. That is, if an LSI discrete-time system is characterized by the 

impulse response ℎ���, and is excited by the input sequence ���� � ���80, then the output sequence is 

���� � /,�019-���80
, where /,�019- �  ∑ ℎ���+∞���∞ ����8<

1=80
 is the frequency response of the 

LSI system when it is evaluated for 8 � 8%. 

a) Show that, in general terms, if  ���� � sin��8%�, or if ���� � cos��8%�, and if ℎ��� is 

real-valued (i.e. if ℎ��� is complex-valued then the following is not true), then ���� �
./,�019-.sin >�8% + ∠/,�019-?, or ���� � ./,�019-.cos >�8% + ∠/,�019-?. These 

results presume that we write /,�019- � ./,�019-.eA∠B,CDE9-, where ./,�019-. represents 

the magnitude part of the frequency response of the system when it is evaluated for 8 � 8%, 

and ∠/,�019- represents the phase part of the frequency response of the system when it is 

evaluated for 8 � 8%. 

b) Using as a baseline the Matlab code that is used in P2P Exercise 2, and assuming the LSI 

discrete-time system specification as above, assume further that 8% � OMEGA0= 0.7404, 

and use the following Matlab code to show that MAG=./,�019-., and PHI=∠/,�019-, 
are as follows: 

OMEGA0= 0.7404; 
[H, W]=freqz(b,a,[0 OMEGA0]); 
MAG=abs(H(2)); 
PHI=angle(H(2)); 
% do your confirm that MAG = 5.1418 ? 
% do you confirm that PHI 0.2159 ? 

 

c) Now, create a long sinusoidal sequence with 105 samples, obtain the (numerical) system 

output using the Matlab command filter(), program your analytical solution, and check 

the difference between numerical and analytical results using the following Matlab code: 

N=1E5; n=[0:N-1]; 
xsine=sin(n*OMEGA0).'; % you may check that cos() also works 
ysine=filter(b,a,xsine); 
myysine= please complete here .'; % don’t forget transposition .' 
plotrange=[1:300]; 
figure(3) 
subplot(4,1,1) 
plot(n(plotrange), xsine(plotrange)) 
title('INPUT') 
subplot(4,1,2) 
plot(n(plotrange), ysine(plotrange)) 
title('Output (numerical)') 
subplot(4,1,3) 
plot(n(plotrange), myysine(plotrange)) 
title('Output (analytical)') 
subplot(4,1,4) 
plot(n(plotrange), ysine(plotrange)-myysine(plotrange)) 

title('difference signal') 
 

Note: you should obtain the following difference signal: 
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How do you explain to your Colleagues that the first few samples are not zero ? 

 

 

Extra P2P Exercise 4 

In this exercise, we show that if the input sine wave that is specified in P2P Exercise 3 is contamined by 

noise, at a certain SNR, it comes out of the system with an improved SNR. We find the theoretical gain 

in SNR, and validate that result numerically in Matlab. 

a) The following Matlab code (which is a continuation of the Matlab code in P2P Exercise 3) 

generates noise with a uniform Probability Density Function (PDF) of the samples’ 

amplitudes, whose auto-correlation function that consists of an impulse and such that when 

the noise is combined with the sine wave the resulting SNR is 10 dB. 

SNR=10; MAXLAG=30; 
a=sqrt(3)/(sqrt(2)*10.^(SNR/20)); 
xnoise=2*a*(rand(N,1)-0.5); 
Ps=mean((abs(xsine)).^2); 
Pn=mean((abs(xnoise)).^2); 
10*log10(Ps/Pn) 
% to confirm that rx[ell]=K*DELTA[ell] 
[rx, lag]=xcorr(xnoise, MAXLAG); 
rx=rx/length(xnoise); 
figure(4) 
stem(lag, rx) 
xlabel('$$\ell$$ (samples)','Interpreter', 'Latex'); 
ylabel('$$r_{X}[\ell]$$','Interpreter', 'Latex'); pause 

 

Explain to your Colleagues: 

 if the auto-correlation function is such that it consists of an impulse, how do we call 

this type of noise ? why ? 

 the rationale that justifies that the above parameter “a” and that leads to a 10 dB 

SNR 

 why running this code multiple times generates a practical SNR that is not exactly 

equal to, but is very close to, 10.0 dB. 

 

b) The following Matlab code (which is a continuation of the above Matlab code) allows to 

evaluate numerically the SNR of the signal after filtering: 

ynoise=filter(b,a,xnoise); 
Ps=mean((abs(ysine)).^2); 
Pn=mean((abs(ynoise)).^2); 
10*log10(Ps/Pn) 

 

Running this piece of Matlab (plus the code in a) ) reveals that the output SNR is an 

improvement of the input SNR by about 6 dB. How do you explain that to your peers ? 

 

c) [NOTE: this last question is more atypical than the previous ones, therefore, Student Ey 

should receive contributions/help/suggestions from the remaining group Students] 

We state here, without proof, that if the impulse response of our LSI system is ℎ���, and if 

the input auto-correlation is FG�ℓ�, then the output auto-correlation is given by  FI�ℓ� �
ℎ�ℓ� ∗ ℎ∗��ℓ� ∗ FG�ℓ�. If we just consider the noise part of the input signal, it was shown in 

a) that FG�ℓ� � KL�ℓ�, where K is the average power of the input noise. 
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(1) Show that K � MN_PNQ � R�

� , where a is the theoretical value that is specified in the 

Matlab code of P2P Exercise 4 a) . 

(2) Find the theoretical value of the average power of the output noise MN_STU � FI�0� 
where  FI�0� � ∑ |ℎ���|�
VN=$V  MN_PNQ. This value may be conveniently computed 

using the Parseval theorem in the Z-domain. Remember that, in this case, in the Z-

domain, the region of convergence consists of a ring, which means that when you 

apply the contour line integral and, therefore, the residue theorem, only two poles 

matter. 

Note: the solution should be: MN_STU � 	
'�

	$'� ∙ 	
	$�'� cos��+�
'X MN_PNQ 

(3) Confirm that your theoretical output SNR is easily computed as: 

Ps=(MAG^2)/2; 
Pn=(a^2)/3; 
Pn=(1+ALFA^2)/(1-ALFA^2)*1/(1-

2*(ALFA^2)*cos(2*BETA)+ALFA^4)*Pn; 
10*log10(Ps/Pn) 
% = 16.1422   (and the input SNR is 10 dB) 

 

Extra P2P Exercise 5 

In this exercise, we look at the PDF of all signals of interest in these set of P2P exercises. Use the 

following Matlab code to check the PDF of several signals: 

 [H X]=hist(x,50); equalize=50/(max(x)-min(x)); 
bar(X, H/sum(H)*equalize, 0.5); 
ylabel('PDF'); xlabel('x[n] amplitude'); pause 
 

run this piece of code after setting x to different alternatives : 

x=xnoise; 
x=ynoise; 
x=xsine; 
x=ysine; 
x=xnoise+xsine; 
x=ynoise+ysine; 
 

Can you anticipate what cases correspond to the following two plots ? And how do you explain their 

different shapes ? 
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