
  

BSC IN ELECTRICAL AND COMPUTER ENGINEERING 

 

 AJF   Week of November 24, 2025 

L.EEC025 - FUNDAMENTALS OF SIGNAL PROCESSING 

Academic year 2025-2026, week 10 

TP (Recitation) problems 

 

Topics: Exercises on the DFT 

 

 

Exercise 1 

Find the DFT, of length N, of the discrete-time signal   






  n
N

nx
2

cos1
2

1
. Validate your 

analytical result in Matlab by making, for example, N=8. 

 

 

Exercise 2 

Consider the discrete-time signal    nunx n 2 . 

a) Find its Fourier transform  jeX . 

b) Show that the discrete-time signal  ny  of length N and whose DFT is obtained as 

  1,...,1,0,

2











 NkeXkY N

jk


, is given by   1,...,1,0,
21

2









Nnny
N

n

. 

c) Verify numerically in Matlab the previous result using N=64. 

 

 

Exercise 3 

Consider the following set of Matlab commands: 

x=[3 2 1 0 0 0];  
X=fft(x);  
Y=real(X);  
y=x-ifft(Y); 
Z=X.*X; 
z=ifft(Z)  

 

a) Say what the purpose of this Matlab code is, and identify the main DFT properties that are 

implied. 

b) Without computing the DFT or the IDFT, find the contents of vector y. Explain. 

c) Replace the two lines of the above code involving Y and y by different Matlab commands 

delivering the same result. Explain. 

d) Without computing the DFT or the IDFT, find the contents of vector z. Explain. 

e) The result in vector z is equivalent to the result of a linear convolution. Would this hold true if  

x=[3 2 1 1 0 0] ? 

  



 AJF  

 

 

Exercise 4 

Consider the following discrete-time signal    01100 nx . 

a) Find its DFT. 

b) Express the DFT of the signal    01100000nx  as a function of the DFT 

of  nx0 . 

c) Confirm your results using Matlab. 

 

 

Exercise 5 

Use a microphone correctly plugged to your computer and the following Matlab code (or an 

alternative audio recorder) in order to record on a WAV file the sound of your voice during 10 

seconds. During this recording time you should utter different vowels, for example, a-e-i-o-u, as well 

as your name. This Matlab code sets the sampling frequency to 22050 Hertz and sets the sample 

resolution to 16 bits. 

 
FS=22050; duration=10; NBITS=16; 
r = audiorecorder(FS, NBITS, 1); 
fprintf('Start speaking...\n'); 
record(r);     % speak into the microphone... 
pause(duration); stop(r); 
% p = play(r);   % listen to the complete recording 
x = getaudiodata(r, 'single'); % get data normalized to +-1.0 
x=x(FS:end); % avoid first second, may contain noise 
fprintf('Stop speaking. Now playing...\n'); 
sound(x,FS); 
fprintf('Stop playing.\n'); 
audiowrite(soundfile.wav', x, FS, 'BitsPerSample', NBITS); 

 

After you create the WAV file (you only need to do this once), use the following Matlab code to read 

and play the recorded sound: 

 

[x,FS,NBITS]=wavread('soundfile.wav'); % or 
[x,FS]=audioread('soundfile.wav'); 

sound(x,FS,NBITS); %NOTE: x values are in the range [-1, 1] 
N=length(x); 
samples=[0:N-1]; 
figure(1) 
plot(samples/FS, x); 
xlabel('Time (s)'); 
ylabel('Amplitude'); 
title('soundfile.wav'); 

 

Our objective now is to filter the recorded sound using different filters and to listen to the result. We 

will use the (incomplete) Matlab code aeiou_name.m  as a baseline. In order to complete this 

Matlab command file, you should replace ‘COMPLETEHERE’ by the appropriate Matlab commands 

according to the following indications: 



 AJF  

a) design an FIR “equiripple” filter (comand firpm, or remez), or order 126 (i.e., length 

127) having passband between 300 Hz and 3200 Hz, and stopbands between 0 Hz e 200 Hz, 

and between 4000 Hz and the Nyquist frequency, 

b) design a low-pass FIR filter using the window method (comand fir1) whose cut-off 

frequency is 2000 Hz, 

c) using the filter designed in b) modify its impulse response vector in order to obtain a high-

pass filter (i.e., without using again command fir1). 

 

For each of the designed filters (one at a time!) first check, using the instructions already available in 

the supplied .m file, whether the resulting frequency response corresponds to the desired frequency 

response. Listen to each filtered signal and compare it to the original sound. Discuss what changes you 

notice as a result of each filtering. 

 

Optional: You may use the Matlab filer design environment fdatool (or filterDesigner in the most recent 

Matlab version) in order to repeat each one of the above designs and check their characteristics. 

 

 


