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Sumário

• Filtragem adaptativa numa perspetiva prática

– conceito e exemplos

– algoritmos de gradiente

• filtragem ótima de Wiener

• o método do gradiente mais negativo

• o algoritmo LMS
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Filtros adaptativos

• Conceito
– um filtro adaptativo é um filtro cujos coeficientes são ajustados, de 

forma adaptativa, em função de objetivos ou condições variáveis no 

tempo e traduzidos num sinal de erro

– a aplicação típica consiste em suprimir ou modelizar certas 

componentes (possivelmente indesejáveis), representadas por x(n) e 

projetadas num sinal d(n), de acordo com algum critério estatístico 

incidindo sobre o sinal de erro e(n)

– o critério típico e prático para a adaptação dos coeficientes do filtro e 

otimização do seu desempenho é a minimização do valor médio 

quadrático do sinal de erro

Filtro

Adaptativo

x(n) y(n)

e(n)

+

-

d(n)
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• Conceito (cont.)

– para entradas estacionárias e usando o critério de minimização de 

erro médio quadrático, o filtro ótimo é único e designa-se por filtro de 

Wiener; para entradas não estacionárias, os filtros de Kalman são 

mais adequados e eficientes (mas também implicam maior complexidade)

– os filtros adaptativos podem ser do tipo FIR ou IIR, porém são quase 

sempre preferidas estruturas FIR já que, como se sabe, estas são 

intrinsecamente estáveis

• Exemplos

– os filtros adaptativos são usados em diversas aplicações e contextos, 

tudo dependendo da forma como a resposta desejada do sistema 

adaptativo é caracterizada e extraída. Há essencialmente quatro 

tipos de aplicações: identificação, modelização inversa, predição, 

cancelamento de interferência.
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• Identificação

– nestas aplicações, o filtro 

adaptativo é usado para 

fornecer um modelo linear

que representa a melhor 

aproximação, de acordo 

com algum critério, a um 

sistema desconhecido

• Modelização inversa 

(igualização)

– nestas aplicações o filtro 

adaptativo tem por objetivo 

fornecer um modelo 

inverso que representa a 

melhor aproximação, de 

acordo com algum critério, 

a um sistema 

desconhecido

Filtro

Adaptativo

x(n)

y(n)

e(n)

+

-

d(n)
Sistema

Desconhecido

Filtro

Adaptativo

x(n) y(n)

e(n)

+

-

Sistema

Desconhecido

Atraso

Exemplos de aplicações:

• descorrelação preditiva

• igualização adaptativa
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• Predição
– nestas aplicações, o filtro 

adaptativo tem por objetivo 

fornecer a melhor predição

para a evolução de um sinal 

com base no conhecimento 

do seu passado

• Cancelamento de 

interferência
– nestas aplicações o filtro 

adaptativo tem por objetivo 

cancelar uma interferência 

desconhecida e contida em 

d(n) mas refletida também 

no sinal de referência x(n). 
O objetivo é simplesmente 

subtrair o “ruído” do sinal 

principal, de forma adaptativa, 

de modo a melhorar, à saída, a 

relação sinal-ruído.

Filtro

Adaptativo

x(n)

y(n)

e(n)

+

-

Z
-1

Exemplos de aplicações:

• codificação linear preditiva (LPC)

• ADPCM

• análise espectral autoregressiva (AR)

Filtro

Adaptativo

x(n)

y(n) e(n)

+
-

d(n)

Fonte

Ruído

Fonte

Sinal

Exemplos de aplicações:

•cancelamento adaptativo de ruído

•cancelamento de eco
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Dado que o primeiro e último casos servem de base ao trabalho de 

laboratório, retiram-se a seguir algumas conclusões pertinentes a partir 

da análise aos sinais e operações implicados. Considerando que o sinal 

d(n)=s(n)+x’(n) contém uma parcela de informação útil a preservar s(n) e 

também uma componente de ruído a eliminar x’(n) e que este é também 

projetado em x(n), tomam-se, como hipóteses realistas, as seguintes:

ou seja, s(n) é descorrelacionado com qualquer uma das duas 

representações do ruído e estas, por sua vez, exibem uma correlação 

cruzada dada por p(k) para uma distância k.

A saída do filtro adaptativo y(n) e o sinal de erro e(n) são dados por: 

o que coloca em evidência que o sinal s(n) faz parte do sinal de erro. Porém, 

dadas as hipóteses anteriores, minimizar o erro médio quadrático de e(n)

equivale a minimizar o erro médio quadrático do ruído indesejado dado 

por e(n)-s(n)=x’(n)-y(n), o que significa que s(n) não é afetado pelo 

processo de filtragem adaptativa.
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Como casos limite de operação do filtro adaptativo temos duas situações, a 

primeira em que  y(n)=x’(n) e a segunda em que                                       .

No primeiro caso a operação de filtragem é efetiva, cancelando todo o ruído. 

No segundo caso, o sinal de referência é completamente 

descorrelacionado com o sinal primário, fazendo com que o filtro 

adaptativo se “auto-desligue”, produzindo y(n)=0, o que não afeta o sinal 

principal.

– EXEMPLO 1

• Cancelamento da interferência sinusoidal de rede (50 Hz) num 

eletrocardiograma usando somente dois coeficientes

sinal

50 Hz

da rede

y(n)
e(n)

+
-

deslocamento

de fase de 90º

algoritmo

LMS

hn(1)

hn(0)

+

+

d(n)

ECG
x(n)

NOTAS:

• o filtro adaptativo funciona como um “notch filter”

• os dois coeficientes controlam a amplitude e a fase 

da interferência sinusoidal
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– EXEMPLO 2

• Redução / cancelamento de ruído acústico em sinais de voz (é possível 

melhorar a a relação sinal/ruído em mais do que 10 dB)

y(n)
e(n)

+
-

algoritmo

LMS

d(n)

voz

“limpa”

microfones

de referência

microfone

primário

NOTAS:

•o algoritmo de adaptação pode ser o “LMS” ou outro alternativo

•os microfones de referência devem situar-se suficientemente longe 

do falante de modo a captarem quase exclusivamente só o ruído
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– EXEMPLO 3

• Cancelamento de eco em circuitos telefónicos

Filtro

Adaptativo

x(n)

y(n)

e(n)
+

-

Híbrido
w(n)

x’(n)+w(n)

(falante A)

(falante B)

NOTAS:

• o objectivo do filtro adaptativo é sintetizar uma réplica do eco, perto do seu ponto de 

geração, e subtraí-la do sinal de retorno

• idealmente, o filtro adaptativo aproxima a função de transferência de retorno do eco

Nota introdutória sobre o algoritmo LMS, o que é afinal ?

trata-se de um algoritmo de gradiente estocástico, no sentido em que itera o peso de cada coeficiente 

de um filtro transversal (FIR) na direção do gradiente negativo da função amplitude quadrada de um 

sinal de erro, em ordem ao peso desse coeficiente; detalhes seguem nos ‘slides’ seguintes ...
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Algoritmos de Gradiente
• Filtragem de Wiener

– dado o sistema adaptativo já ilustrado anteriormente:

será:

admitindo as hipóteses anteriormente consideradas e admitindo vetores 

complexos, será para a função de erro a minimizar:

sendo 2 a variância de d(n) cuja média se supõe nula, p(l) e p*(k)
representam a correlação cruzada entre o sinal d(n) e a entrada x(n)

e r(l-k) representa a correlação da entrada para uma distância l-k.

Filtro

Adaptativo

x(n) y(n)

e(n)

+

-

d(n)
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Abreviadamente será:

o que revela que quando os sinais x(n) e d(n) são conjuntamente 

estacionários, a função do erro quadrático médio é uma função de 2ª 

ordem dos coeficientes do filtro FIR. Mostra-se que [Simon Haykin, 

“Adaptive Filter Theory”, Prentice-Hall, 1991] que se este filtro possuir N 

coeficientes, a superfície de erro é uma superfície hiperparabolóide de 

N+1 dimensões com um mínimo global e sem mínimos locais.

O mínimo global ocorre em JMIN onde se verifica que o vetor gradiente é 

identicamente nulo, ou seja:

Assumindo coeficientes h(k) reais, o vetor gradiente,

concretizado na expressão J produz: 

pelo que se conclui que os coeficientes ótimos são os que verificam:

a solução deste sistema de equações é conhecida como a solução de 

Wiener-Hopf que fornece o filtro ótimo (filtro de Wiener).
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Ilustração de superfície hiperparabolóide (suave e convexa) quando o 

número de coeficientes é 2



13

F
u
n
d
am

en
to

s
d
e 

P
ro

ce
ss

am
en

to
S

in
al

, 
1
2
ª 

se
m

an
a

F
E

U
P

 e
 D

E
E

C
, 
1
1
 d

ez
em

b
ro

, 
2
0
2
5

© AJF

• O método do gradiente

– Em vez de usarmos o procedimento determinístico anterior que é 

aplicável a sinais estacionários para os quais se conhecem 

previamente as estatísticas associadas, podemos, não conhecendo 

estas, optar por um método iterativo de aproximação ao filtro ótimo 

de Wiener.

– O método iterativo de adaptação mais conhecido que converge para 

a solução ótima (filtro de Wiener), é o método de gradiente mais 

negativo (“steppest gradient” = direction of the negative of the

gradient vetor) que referiremos simplesmente pelo método do 

gradiente e que consiste no seguinte procedimento:

1. Parte-se de um valor inicial para os coeficientes do filtro, tipicamente o 

vetor nulo,

2. Calcula-se o vetor gradiente, determinado em ordem aos coeficientes do 

filtro no instante n,

3. Estimam-se os coeficientes do filtro para a próxima iteração modificando a 

estimativa atual no sentido oposto ao do vetor gradiente,

4. Retorna-se ao ponto 2 e repete-se o processo.
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• Ilustração do método do gradiente:
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– De acordo com este procedimento, será então:

em que  é uma constante real e positiva que traduz o passo de 

adaptação do algoritmo.

Como vimos anteriormente,                                                    porém, como

não conhecemos as estatísticas, podemos optar por uma expressão 

alternativa usando a definição de p(k) e de r(l-k) e admitindo dados e 

coeficientes reais:

Este resultado traduz o princípio da ortogonalidade: para a solução ótima, 

x(n-k) e e(n) são ortogonais. Como corolário desta afirmação, resulta 

que para a solução ótima, y(n) e e(n) são ortogonais. 

Será então:

Esta é a solução do método iterativo de gradiente mais negativo que 

evolui suavemente para a solução ótima (i.e. para o filtro de Wiener).
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• O algoritmo LMS

– O algoritmo anterior presume a obtenção de estatísticas durante o 

procedimento iterativo e oferece a garantia de convergência suave 

para o filtro de Wiener. Podemos contudo ter, a partir do algoritmo 

anterior, uma outra aproximação à solução ótima baseada no 

gradiente “instantâneo” (dito estocástico), em que se elimina o 

operador de média:

Dada a sua simplicidade, esta solução é muito popular e constitui o 

conhecido algoritmo de filtragem adaptativa LMS (de Least Mean

Squares). Porém, o custo da simplicidade traduz-se em ruído de 

gradiente no cálculo recursivo de cada coeficiente do filtro adaptativo. 

Este ruído de gradiente pode conduzir (assumindo convergência):

1. Ou a uma solução aleatória do filtro adaptativo em torno do filtro ótimo de 

Wiener,

2. Ou a um deslocamento fixo do filtro adaptativo relativamente ao filtro 

ótimo (desalinhamento), comprometendo portanto o seu desempenho.

Estes aspetos são controlados através do passo de adaptação  : um 

passo mais pequeno dá lugar a um menor ruído de gradiente o que 

minimiza o problema de desalinhamento, mas implica também, em 

contra-partida, uma convergência mais lenta para a solução ótima.

Para saber mais: há outros algoritmos de filtragem adaptativa que possuem melhor 

desempenho do que o LMS, e.g., o NMLS e o Recursive Least Squares (RLS).
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• Ilustração do impacto do passo de adaptação 


