Arm Education

L.EEC025 - Fundamentals of Signal Processing (FunSP)

2025/2026 — 1%t semester

Week13, 15 Dec 2025

Objectives:

-experimenting adaptive filtering in a system identification configuration highlighting:

e the steepest descent concept
e the impact of the adaptation factor (B)
e the importance of the bandwidth of the excitation signal

DSP Education Kit
LAB 11

Adaptive Filters

Issue 1.0

Arm Education

Contents

A 1101 e T ¥ T 4 o N 1
11 L@ OVEIVIEW ..t iiiiiee ettt ettt e e et e e st e e sata e e e sabeeeesanbaeeesntaeessanteeessanseeesanns 1

P2 =Y [11 1= 4 U= o 1

3 Adaptive Filter Using C Code [just for familiarization, not LAB assessment] 1

4 Adaptive FIR Filter for Noise Cancellation Using External Inputs [just for
familiarization, Not LAB asS@SSMENt]c.cccieereeceerencessessassososcsssessossesssssssescssassessassscanse 5

5 Normalized Least Mean Squares Algorithm [just informative]ccccccvennnennee 6

6 Adaptive FIR Filter for System Identification of an FIR Filter [this is for LAB

TR 111=] 14 [P ON 7
6.1 Lab INTrOAUCTION ...t sbe e s e e e e sab e e saneeesaneas 8
6.2 Adaptive filter @XPeriMENTScii e e e e e s e e e eeaaaeaeeaes 11

2 © T Yol (11 [o] 3 K30 14

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 1

Arm Education

1 Introduction

1.1 Lab overview

The examples in these exercises concern variations of an adaptive FIR filter using the Least Mean
Squares (LMS) algorithm, or the Normalized LMS algorithm.

2 Requirements

To carry out this lab, you will need:

e An STM32F746G Discovery board
e A PCrunning Keil MDK-Arm

e MATLAB

e An oscilloscope

e Suitable connecting cables

3 Adaptive Filter Using C Code [just for familiarization,
not LAB assessment]

This example applies the Least Mean Square (LMS) algorithm, coded in C, to pre-determined input
and desired output signals (sequences). It illustrates the following steps in the adaptation process
using the adaptive structure shown in Figure 1.

Obtain new input values x[n] and desired output sample d[n].
Compute the output of the adaptive FIR filter y[n] using equation (1).
Compute the instantaneous error signal e[n] using equation (2).

PR

Update each of the adaptive FIR filter’s coefficients (weights) using equation (3). This is the
(stochastic) LMS approximation of the iterative steepest descent algorithm.
5. Update the contents of the delay line containing N previous input samples.

These steps are repeated at every sampling instant.

yIn] = ZiZ9 hnlk] x[n — k] (1)
e[n] = d[n] - y[n] (2)
hn+1[k] = hylk] + 2Be[n]x[n — k] (3)

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 1

Arm Education

d[n] desired

/ output

+
*[nl adaptive yin] ;é

) filter error
input output e[] signal

Figure 1: Block diagram of adaptive filter implemented by program stm32f7 adaptive.c

The following code snippet shows the program stm32f7 adaptive.c thatimplements the LMS
algorithm for the adaptive filter structure shown in Figure 1.

The desired output signal used in program stm32f7 adaptive.c is

d(n)=2cos(2nx/8) (4)
and the input signal is

x(n) =sin(2nx /8) (5)

The learning rate, number of filter coefficients, and number of sample instants simulated by the
program are 0.01, 21, and 64, respectively.
// stm32f7_adaptive.c

#include "stm32f7_wm8994 init.h"
#include "stm32f7_display.h"

#tdefine SOURCE_FILE_NAME "stm32f7_adaptive.c"

#tdefine BETA 0.01f // learning rate
#define N 21 // number of filter coeffs
#tdefine NUM_ITERS 64 // number of iterations

float32_t desired[NUM_ITERS]; // storage for results
float32_t y out[NUM ITERS];

float32_t error[NUM_ITERS];

float32_t w[N+1] {0.0}; // adaptive filter weights
float32_t x[N+1] {0.0}; // adaptive filter delay line
int i, t;

float32_t d, y, e;

int main()
{
for (t = ©; t < NUM_ITERS; t++)
{
x[0] = sin(2*PI*t/8); // get new input sample
d = cos(2*PI*t/8); // get new desired output
y = 0; // compute filter output

for (i = @; i <= N; i++)

y += (W[i]*x[i]);
e=d-y; // compute error
for (1 = N; i >=0; i--)

w[i] += (BETA*e*x[i]); // update filter weights

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 2

Arm Education

if (1 != 9)
x[i] = x[i-1]; // shift data in delay line
¥
desired[t] = d; // store results
y_out[t] = y;
error[t] = e;
}
stm32f7_LCD_init(®, SOURCE_FILE_NAME, GRAPH);
while(1)
{
plotWave(desired, NUM_ITERS, 0, 0);
proceed_statement();
plotWave(y_out, NUM_ITERS, 0, 0);
proceed_statement();
plotWave(error, NUM_ITERS, 0, 0);
proceed_statement();
}

}

Now, run the program stm32f7 adaptive.c and observe its outputs by following these steps:
1. Build and run program stm32f7 adaptive.c. The program stores the desired output,
output and error signals for 0 <7 <64 in arrays desired, y out,and error
respectively. The arrays are of type f1oat32 t.
2. By pressing the blue user pushbutton on the Discovery board, you can cycle through graphs

on the LCD of the first 64 sample values of desired, y out,and error.
3. Halt the program and save the contents of these arrays to data files by entering

SAVE desired.dat <start address>, <start address + 0x100>
SAVE y out.dat <start address>, <start address + 0x100>
SAVE error.dat <start address>, <start address + 0x100>

in the Command window in the MDK-Arm debugger. Use the Memory window to find the
start addresses of the arrays desired, y out,and error.

4. Plot the contents of each of the data files using MATLAB function STM32F7 BAR real ().
The filter output should have converged to the desired output and the error should have
decreased over the 64 sample instants simulated as shown in the following figures.

1 T T T T

0.8

0.6

0.4

0.2

0

real

02 1

-04

06 1

-08

A I 1 1 1
0 10 20 30 40 50 60

n

Figure 2: Desired output desired, simulated using program stm32f7 adaptive.c

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 3

Arm Education

08

0.2

real
o

-5

=

-0.2

04 f 1

-0.6

08} 1

Figure 3: Adaptive filter output y _out, simulated using program stm32f7 adaptive.c

1

0.8

0.6
0.4

0.2

Lol e
: 1L LI
R |
0.4 r R

real

-0.6

-0.8 [

-1

0 10 20 30 40 50 60
n

Figure 4: Error signal error, simulated using program stm32f7 adaptive.c

5. Repeat the experiment using a learning rate (beta) of 0.02 and verify that convergence is
faster.

Program stm32f7 adaptive.cisan extremely simplistic demonstration of an adaptive filter. It
is intended to introduce the relationships between input, output, desired output and error signals,
and the role of the learning rate, and to illustrate how simple it can be to implement the LMS
algorithm.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 4

Arm Education

4 Adaptive FIR Filter for Noise Cancellation

Using External Inputs [just for familiarization, not LAB
assessment]

Program stm32f7 noise cancellation intr.c requirestwo external inputs, a desired
signal and a reference noise signal to be input to left and right channels, respectively. Test input
signals are provided in file speechnoise.wav. This may be played through a PC soundcard and
input to the LINE IN socket on the audio card via a stereo 3.5 mm jack plug to 3.5 mm jack plug
cable. The WAV file speechnoise.wav comprises pseudorandom noise on the left channel and
speech on the right channel.

Figure 5 shows the program in a block diagram form. Within the program, a primary noise signal,
correlated to the reference noise signal input on the left channel, is formed by passing the reference
noise through an IIR filter. The primary noise signal is added to the desired signal (speech) input on
the right channel.

LINEINL signal t signoise HP OUT L
o ® >
+
IIR
filter
refnoise I /‘ +¢ error HP OUT R
LINE IN R i
o > adaptive >

filter

(

Figure 5: Block diagram representation of program stm32f7 noise cancellation intr.c

Build and run the program and test it using file speechnoise.wav. As adaptation takes place, the
output on the left channel of HEADPHONE OUT should gradually change from speech plus noise to
speech only. You may need to adjust the volume at which you play the file speechnoise.wav. If
the input signals are too quiet, then the adaptation may be very slow.

While the program is running, use the blue user pushbutton to toggle between graphs on the LCD
showing the adaptive filter coefficients (the impulse response of the adaptive filter) and the
magnitude of their Fast Fourier Transform (FFT).

After adaptation has taken place, and the program has been halted, the 256 coefficients of the
adaptive FIR filter, firCoeffs32, may be saved to a data file by typing:

SAVE <filename> <start address>, <end address>,

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 5

Arm Education

where start address isthe address of array firCoeffs32 and end address is equal to
start address + 0x400, and plotted using the MATLAB function stm32f7 logfft ().The
filter coefficients should reveal the impulse and magnitude frequency responses of the IIR filter
implemented by the program and shown at the left-hand side of Figure 5. The characteristics of the
[IR filter are determined by the coefficients in header file bilinear.h. You can substitute
different coefficients by including, for example, header file elliptic bp.h.

5 Normalized Least Mean Squares Algorithm [just
informative, not LAB assessment]

In the previous example, you may have noticed that the rate of adaptation of the system could be
influenced by the amplitudes of the signals involved. This effect can be reduced by using the
Normalized LMS (NLMS) algorithm —the steps involved are summarized below.

Obtain new input and desired output sample values x[n] and d[n].
Compute the output of the adaptive FIR filter y[n] using equation (1).
Compute the instantaneous error signal e[n] using equation (2).

PwnN e

Compute the instantaneous energy, energy[n] of the values stored in the filter delay line
(input buffer) x, using equation (6)

o

Update each of the adaptive FIR filter’s coefficients (weights) using equation (7).
6. Update the contents of the delay line containing N previous input samples.

These steps are repeated at every sampling instant.

N-1

energy(n) = sz(k) (6)
k=0

hns1[K] = holl] + 22— e[nlx[n - k] (7)

Program stm32f7 noise cancellation norm CMSIS intr.c isa very slightly modified
version of program stm32f7 noise cancellation CMSIS intr.c thatimplements the
normalized LMS algorithm.

Program stm32f7 noise cancellation norm CMSIS intr.c makes use of CMSIS
library function arm 1ms norm £32 () in place of functionarm 1ms £32 () and uses a far
larger learning rate, beta.

You should be able to verify that program
stm32f7 noise cancellation norm CMSIS intr.cis relatively insensitive to the
volume at which the test file speechnoise.wav is played.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 6

Arm Education

6 Adaptive FIR Filter for System Identification of
an FIR Filter [this is for LAB assessment]

Program stm32f7 FIRadapt intr FPS.c usesan adaptive FIR filter configured for system
identification of another FIR filter (unknown to the adaptive filter), as shown in Figure 6.

out Left
FIR
(pranay } | filter
d[n] desired
/ output
+
*[n] adaptive yin] - N
. A\
input filter output e[n] error
signal
/ out Right

Figure 6: Block diagram representation of program stm32f7 FIRadapt intr FPS.c

Adaptation takes place in real-time while the same Pseudorandom Sequence (generated by function
prand()) is input to both filters. You can watch on an oscilloscope the input of both filters and the
difference between the outputs of the two filters, error. As the adaptive filter learns the
characteristics of the unknown FIR filter, the variance of the error signal decreases.

For the purposes of appreciating the behavior of the adaptive filter, its rate of adaptation beta has
deliberately been set very low (the range in stm32f7 FIRadapt intr FPS.c isbetween 1E-4
and 1E-0).

While the program is running, use the blue user pushbutton to toggle between graphs on the LCD
showing the adaptive filter coefficients (the impulse response of the adaptive filter).

In one of the graphs (the most important!), two impulse responses are shown at the same time. The
reference (ideal) impulse response is shown in blue samples. This impulse response is programmed
inthemain () of stm32f7 FIRadapt intr FPS.c . Thetime-varyingimpulse response of
the adaptive filter is shown in red samples. This way, it is possible to visualize how the adaptive filter
coefficients learns, in real-time, the impulse response of the reference filter. It should be
emphasized that this filter is unknown to the adaptive filter. The adaptive filter typically starts from a
vector of zeros and learns the impulse response of the unknown filter through the data (this is the
fundamental idea at the origin of Machine Learning).

The length of the impulse responses of both FIR and adaptive filters is 64.

This example shares many similarities with the noise cancellation example. Both use an adaptive
filter configured for system identification. However, in the case of noise cancellation, the output

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 7

Arm Education

signal of interest is the error between the desired output and the output of the adaptive filter. On
the other hand, in this example, the interest might be said to lie in the output of the adaptive filter
or in its coefficients. In both examples, an FIR filter is adapted so as to take on the characteristics of
the unknown FIR (which could also be an IIR filter!).

6.1 Lab introduction

In this Lab, we use the main () project file thatis named stm32£f7 FIRadapt intr FPS.c
and that is available on the Moodle platform. Its C code is listed next.

// stm32f7_FIRadapt_intr_FPS.c
// uses normalized LMS

#include "stm32f7_wm8994_ init.h"
#include "stm32f7_display.h"

#define BLOCK_SIZE 1
#define NUM_TAPS 64 // was 256

#define SOURCE_FILE_NAME "stm32f7_FIRadapt_intr_FPS.c"

// this is adapted from stm32f7_dft.c
typedef struct
{
float32_t real; // this represents the ideal impulse response
float32_t imag; // this represents the adaptive filter impulse response
} COMPLEX;

// reference impulse response versus estimated impulse response

COMPLEX refVSest[NUM_TAPS];

float32_t beta = 1E-3; // between 1E-4 and 1E-© // using normalized LMS !
float32_t hREF[NUM_TAPS] = {0.0f};

float32_t x[NUM_TAPS] {0.0f};
float32_t h[NUM_TAPS] {0.0f};

extern intl6_t rx_sample_ L;
extern intl6_t rx_sample_R;
extern intl6_t tx_sample_L;
extern intl6_t tx_sample_ R;

// float32_t cmplx_buf[2*PING_PONG_BUFFER_SIZE];
// float32_t *cmplx_buf_ptr;

// float32_t outbuffer[PING_PONG BUFFER_SIZE];
volatile int intr_flag = 0;

void BSP_AUDIO_SAI Interrupt_CallBack()

{
float32_t input;
intle_t i, k;
static intl6_t index = -1;

float32_t yn, adapt_out, error, dummy, energy;

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 8

Arm Education

BSP_LED_On(LED1);

index++; index = index%32768;
// input = (float32_t)(prbs(8000));
// input = (float32_t)(rx_sample_ L);
input = 0.5f * prand();
// input = 4000.8f*sin(2*PI*3000.0f/8000.0f*(float32_t)(index));
x[@] = input; yn=0.0;
for (k=8 ; k<NUM_TAPS ; k++)
{
yn += x[k] * hREF[NUM_TAPS-1-k];
}

adapt_out = 0.0; energy = 0.0;
for (i=0; i<NUM_TAPS; i++)
{

adapt_out += (h[i]*x[i]);

energy += x[1]*x[i];
}
error = yn - adapt_out;
for (i = NUM_TAPS-1; i >= @; i--) // update weights
{

dummy = beta*error;

dummy = dummy*x[i];

h[i] = h[i] + dummy/energy;
}

for (i = NUM_TAPS-1; i > @; i--) x[i] = x[i-1]; // update delay line

for(k=0; k < NUM_TAPS; k++)

{
refVSest[k].imag = h[NUM_TAPS-1-k]; // update most recent estimate

}

BSP_LED_Off(LED1);

tx_sample_R = (intl6_t)(error);
tx_sample_L = (intl6_t)(input);
return;

int main(void)

{
int start, k;
int button = 0;

// initialize our reference FIR impulse response
start = 4;
for(k=0; k <= 5; k++)
{
*(hREF+start+k) = -0.1f * (float32_t)(k+1);
*(hREF+start+10-k) = *(hREF+start+k);
}
start += 11;
for(k=0; k <= 16; k++)
{
*(hREF+start+k) = 0.15f * (float32_t)(k+1);
*(hREF+start+32-k) = *(hREF+start+k);
¥
start += 33;
for(k=0; k < 11; k++)

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 9

Arm Education

{
*(hREF+start+k) = *(hREF+4+k);

}

// this data is to be plotted (ideal versus estimated impulse response)
for(k=0; k < NUM_TAPS; k++)
{
refVSest[k].real = *(hREF+k);
refVSest[k].imag = @.0f; // start with zeros
h[k]=0.0f; x[k]=0.0f;

stm32f7_wm8994_init(AUDIO FREQUENCY_ 8K,
I0_METHOD_INTR,
INPUT_DEVICE_INPUT_LINE_1,
OUTPUT_DEVICE_HEADPHONE,
WM8994 HP_OUT_ANALOG_GAIN_6DB,
WM8994 LINE_IN_GAIN_ODB,
WM8994 DMIC_GAIN_ODB,
SOURCE_FILE_NAME,
GRAPH) ;
while(1)
{
button = checkButtonFlag();
if (button == 1)

{
plotLMS(h, NUM_TAPS, LIVE);
¥
else if (button == 0)
{

plotWave(&refVSest->real, NUM_TAPS, 1, 1);

// for(i=0; i<NUM_TAPS; i++)

/1 1

// cmplx_buf[2*i] = h[i];

// cmplx_buf[2*i + 1] = 0.0;

//}

// arm_cfft_f32(&arm_cfft_sR_f32_len256, (float32_t *)(cmplx_buf), 0, 1);

// arm_cmplx_mag_f32((float32_t *)(cmplx_buf), (float32_t *)(outbuffer), NUM_TAPS);
// plotLogFFT(outbuffer, NUM_TAPS, LIVE);

Take a moment to analyze this code, to understand how the impulse response of the reference FIR
filter is set, and the parts of the code implementing Equations (1), (2), (6) and (7).

Now we proceed, as indicated next, to compile the code, upload it to the STM32F7 board, and to run
it. In this experiment, external analog signals generated by the function generator are not required.

After unzipping it, take the stm32f7 FIRadapt intr FPS.c file to the “src” directory that is
located under the folder:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 10

Arm Education

Remember that the directory where you can find the DSP_Education Kit.uvprojx project
file is:

C:\uvision\Keil\STM32F7xx_DFP\2.9.0\Projects\STM32746G-Discovery\Examples\DSP Education Kit\MDK-ARM

You can copy-paste this link directly to File Explorer in Windows for a quick and easy access. For your
convenience, this link is also available on a TXT file on Moodle.

As in previous labs, we use the DSP_Education Kit.uvprojx project file as our baseline
project. This project file is represented by the icon kA DSP_Education_Kit.uvprojx or just

kA DSP_Education Kit poyble-click on this file/icon to start the Keil MDK-Arm development
environment (4Vision). Replace the existing main () file in that project by the new main () thatis
stm32f7 FIRadapt intr FPS.c .

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting
the debugger), and then to run the code.

6.2 Adaptive filter experiments

Instm32f7 FIRadapt intr FPS.c the reference impulse response is programmed
according to the shape illustrated in Figure 7. This shape is intended to facilitate visualization and
modification.

:V

11 samples 33 samples 11 samples

Figure 7: Shape of the reference impulse response programmed in stm32f7 FIRadapt intr FPS.c

Make sure that the code is running in real-time and take the STM32F746G LINE OUT LEFT and RIGHT
output channels to the CHAN1 and CHAN2 inputs of the oscilloscope. As indicated before, in the lab
we do not use the STM32F746G LINE IN inputs given that all signals are generated inside the
STM32F746G kit.

Recall that Figure 6 identifies which signals are represented on the oscilloscope.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 11

Arm Education

Right after you press the blue button® on the STM32F746G kit, you should see an evolution of the
represented signals, on both the STM32F746G kit, and the oscilloscope, as figure 8 documents
(please note that as pointed out at the beginning of Section 6, on the LCD display of the
STM32F746G kit you observe two plots, one in blue, and another one in red).

Figure 8: Screenshots of both the STM32F746G LCD and oscilloscope signals when program
stm32f7 FIRadapt intr FPS.c isrunning.

Question 1: Identify the signals being represented on both the STM32F746G LCD and oscilloscope
and explain why the amplitude of one of the signals in the oscilloscope decreases while one of the
signals represented on the STM32F746G LCD converges to a target shape. Use the concepts of
system identification, learning, and error in your explanation.

Now, stop the execution and modify in the stm32f7 FIRadapt intr FPS.c code the way
the reference impulse response is programmed such that the shape becomes different from the
original; for example, figure 9 illustrates two (easy) possibilities.

Figure 9: Two possible (and easy) modifications to the reference impulse response programmed in
stm32f7 FIRadapt intr FPS.c.

1 Please note that the STM32F7 kit has also a black button. If pressed, it restarts the code execution, which
may be useful to restart the operation of the adaptive filter.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 12

Arm Education

Now, proceed as usual to compile the code, downloading it to the STM32F746G board (by starting
the debugger), and then to run the code.

Question 2: Show that convergence is still achieved independently of the modification on the pre-
programmed reference impulse response.

Question 3: Stop the code execution and modify the value of the “beta” factor in the

stm32f7 FIRadapt intr FPS.c toanew value between 1E-4 and 1E-0. Then proceed as
usual to compile the code, downloading it to the STM32F746G board (by starting the debugger),
and then to run the code. Try at least two alternatives. What is the impact of that change ? Do you
confirm that the behavior of the execution is as expected ? In what sense ?

Question 4: Stop the code execution and modify the value of the “beta” factor in the

stm32f7 FIRadapt intr FPS.c toanew value slightly above 1E-0, for example, 2. After you
compile, download and run the code, you should then see a representation of the LCD screen as
illustrated in Figure 10. How do you explain this outcome ?

Figure 10: lllustrative result when the “beta” factorin stm32f7 FIRadapt intr FPS.c is2.

Instm32f7 FIRadapt intr FPS.c, setthe “beta” factor again to its initial value: beta =
1E-3.

Admit now that we introduce deliberately a bug in the code by changing the following code line:

h[i] = h[i] + dummy/energy;

to

h[i] h[i] - dummy/energy;

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 13

Arm Education

Proceed to compile the code, downloading it to the STM32F746G board (by starting the debugger),
and then to run the code. Watch the signals being represented on the STM32F746G LCD and
oscilloscope.

Question 5: How do you interpret and explain the observations ?

Now, stop the code execution, reverse the previous code modification, uncomment the following
code line:

// input = 4000.0f*sin(2*PI*3000.0f/8000.0f*(float32_t)(index));

and keep beta = 1E-3. Proceed to compile the code, downloading it to the STM32F746G board (by
starting the debugger), and then to run the code. After running, you should obtain a representation
of the signals as suggested in Figure 11.

Figure 11: lllustrative results when the excitation signal is sinusoidal.

Question 6: The results suggest that the adaptive filter is not capable to operate as intended, even if
the amplitude or frequency of the sinusoid is changed. How do you explain that ?

Note: the answer to this question may imply additional search beyond the information that is available on the
lecture slides.

7 Conclusions

This laboratory exercise has introduced the LMS and normalized LMS algorithms for adaptive FIR
filters. Real-time implementations of system identification have been demonstrated.

Copyright © 2025 Arm Limited (or its affiliates). All rights reserved.
Page 14

