
Semantic
Web
and
Linked Data

Liliana Ferreira

2025/26

Class 7: Learning Objectives

• Ontologies.

• Types of ontologies.

• The OWL ontology language
• Logic and Inference.

• The Protégé open-source tool.

People can’t
share knowledge
if they don’t
speak a common
language.

Steps to knowledge sharing

• Common symbols and concepts (Syntax)

• Agreement about their meaning (Semantics)

• Classification of concepts (Taxonomy)

• Associations and Relations of concepts (Thesauri)

• Rules and knowledge about which relations are allowed and make
sense (Ontologies)

Ontology
An ontology provides a specification of what exists in some domain of
interest.

An ontology is…
• Something in your head

• A data structure in a computer

• A set of terms and relationships that we share to ensure we are
communicating consistently

Ontologies

Ontologies are a popular research topic in Artificial Intelligence (AI), e.g.:
• Knowledge Engineering, Natural Language Processing, Intelligent Information

Integration and Multi-agent systems.

By attaching information to data that describe its contents and meaning,
web resources can be used by machines.

The data can be used not just for display purposes, but also for
automation, integration and reuse of data across various applications.

What is an ontology?

Studer(98): Formal, explicit specification of a shared conceptualization

Machine
readable

Concepts, properties,
functions, axioms
are explicitly defined

Consensual
knowledge

Abstract model of
some domain

Ontology

What exists in a domain and how they relate with each other.

• In general, an ontology formally describes a domain of discourse.

• An ontology consists of a finite list of terms (i.e. concepts) and the
relationships between the terms (i.e. properties).

• The terms denote important concepts (classes of objects) of the domain.

• For example, in a university setting: staff members, students, courses,
modules, lecture theatres, and schools are some important concepts.

For what is an ontology good for?

Enable knowledge sharing and knowledge reuse.

• Ontologies capture general knowledge about a domain that is changing rarely
and specify concepts and relations about which knowledge is to be
accumulated and processed.

• For information systems or for the Internet, ontologies can be used to organize
keywords and database concepts by capturing the semantic relationships
among the keywords or among the tables and fields in a database.

What is an Ontology?

A data structure that specifies, for a given
application area:

• Entities

• Properties of entities

• Relationships among entities

Why develop an ontology?

1. To share a common understanding of the entities in a given domain
• among people

• among software agents

• between people and software

2. To enable reuse of data and information
• to avoid re-inventing the wheel

• to introduce standards to allow interoperability and automatic reasoning

3. To create communities of researchers

Criteria for Introducing Ontologies

• Large amounts of data
• Data available on the Web
• Data acquired or generated by new techniques

• Complex data structures
• Inheritance, containment and other hierarchies
• Many relationships

• Diverse sources
• Many legacy systems
• Sources on the Web using different formats

• Requirement for formal proofs
• Contracts and policy enforcement

Terminological Systems

Terminological systems can be seen as basic examples of ontologies; for example:

Terminologies list of terms referring to concepts in a particular domain;
Thesaurus terms are ordered alphabetically and concepts maybe
 described by synonymous terms;
Vocabulary concepts are defined in formal or free text form;
Classification concepts are organized using generic (i.e. is_a)
 relationships;
Coding systems codes designate concepts.

• Concepts(classes) + their hierarchy

• Concept properties (slots/attributes) + their hierarchy

• Property restrictions (type, cardinality, domain …)

• Relations between concepts (disjoint, equality …)

• Instances

Ontology Elements

Ontology Languages

• Ontologies are formal theories about a certain domain of discourse and
therefore require a formal logical language to express them.

• Languages for defining ontologies are syntactically and semantically
rich languages, e.g. richer than common approaches for databases.

The OWL Language

• Web Ontology Language (OWL) is the W3C recommendation for
representing ontologies on the Web;

• OWL is a semantic markup language for defining, publishing and sharing
ontologies in the World Wide Web;

• OWL contains specific constructs to represent the domain and range of
properties, subclass and other axioms and constraints on the values that can
be assigned to the property of an object;

• OWL is based on Description Logics knowledge representation formalism.

The OWL Language

• OWL is a W3C Recommendation

• OWL was published in 2004

• OWL 2 was published in 2012

• Motivations:

• A well-defined syntax

• A formal semantics

• Efficient reasoning support

OWL and Description Logic

• OWL (DL) benefits from extensive work on DL research:

• Well defined semantics

• Formal properties (describing complexity, and providing decidability)

• Known reasoning algorithms

• Implemented systems

OWL “flavors”

• W3C’s Web Ontology Working Group defined OWL as three
different sublanguages:

 – OWL Full
 – OWL DL
 – OWL Lite

• Each sublanguage geared toward fulfilling different aspects of
requirements

OWL DL

• OWL DL (Description Logics)
• Based on FOL semantics

• OWL DL permits efficient reasoning support
• The most expressive decidable OWL sub-language

• But we lose full compatibility with RDF:
• Every legal OWL DL document is a legal RDF document.

• Not every RDF document is a legal OWL DL document.

OWL on one Slide
• Symmetric: if P(x, y) then P(y, x)

• Transitive: if P(x,y) and P(y,z) then P(x, z)

• Functional: if P(x,y) and P(x,z) then y=z

• InverseOf: if P1(x,y) then P2(y,x)

• InverseFunctional: if P(y,x) and P(z,x) then y=z

• allValuesFrom: P(x,y) and y=allValuesFrom(C)

• someValuesFrom: P(x,y) and
y=someValuesFrom(C)

• hasValue: P(x,y) and y=hasValue(v)

• cardinality: cardinality(P) = N

• minCardinality: minCardinality(P) = N

• maxCardinality: maxCardinality(P) = N

• equivalentProperty: P1 = P2

• intersectionOf: C = intersectionOf(C1, C2, …)

• unionOf: C = unionOf(C1, C2, …)

• complementOf: C = complementOf(C1)

• oneOf: C = one of(v1, v2, …)

• equivalentClass: C1 = C2

• disjointWith: C1 != C2

• sameIndividualAs: I1 = I2

• differentFrom: I1 != I2

• AllDifferent: I1 != I2, I1 != I3, I2 != I3, …

• Thing: I1, I2, …

Caption:
• Properties are indicated by: P,

P1, P2, etc
• Specific classes are indicated

by: x, y, z
• Generic classes are indicated

by: C, C1, C2
• Values are indicated by: v, v1,

v2
• Instance documents are

indicated by: I1, I2, I3, etc.
• A number is indicated by: N
• P(x,y) is read as: “property P

relates x to y”

An example

• Woman ≡ Person ⊓ Female
• Man ≡ Person ⊓ ¬Woman
• Mother ≡ Woman ⊓ $hasChild.Person
• Father ≡ Man ⊓ $hasChild.Person
• Parent ≡ Father ⊔ Mother
• Grandmother ≡ Mother ⊓ $hasChild.Parent

We can further infer (though not explicitly stated):
 à Grandmother ⊑ Person
 Grandmother ⊑ Man ⊔ Woman
 etc.

A Sample Ontology
African Wildlife Ontology (AWO)

In Protégé tool:

Example Ontology (Protégé)

The Web Ontology Language (OWL)
provides concepts for detailed ontologies.

• RDFS captures basic ontological relations but lacks several common
and important concepts.
• cardinality restrictions on properties

• inverse, symmetric, and transitive properties

• equality and disjointness

• …

• OWL extends RDFS with advanced concepts.
• RDFS and OWL are used side by side.

OWL defines additional constraints
for individuals, properties, and classes.

OWL defines its own version of resources
and classes.

An IRI uniquely identifies a resource,
but one resource can have many IRIs.

• You cannot assume just because 2 IRIs are different they necessarily
point to different resources.

• ex:Tom a ex:Cat.
• ex:Jerry a ex:Mouse.

• You cannot conclude ex:Tom and ex:Jerry are different.

An IRI uniquely identifies a resource,
but one resource can have many IRIs.

owl:sameAs indicates two resources are the same.

owl:differentFrom indicates two resources differ.

ex:Tom owl:differentFrom ex:Jerry.

Typical properties can either take a literal
or a named node as object.

Typical properties can either take a literal
or a named node as object.

Inverse properties express a triple
in the opposite direction.

Inverse properties express a triple
in the opposite direction.

A functional property restricts the objects
for a given subject to be identical.

A functional property restricts the objects
for a given subject to be identical.

Functional properties have strong effects,
so you must understand them well.

Functional properties have strong effects,
so you must understand them well.

OWL contains similar properties for
symmetry, reflexivity, and transitivity.

Exercise:

Consulting W3C OWL Specifications, define
these properties and identify some examples of
each.

OWL
Simple Classes and Individuals
• An important use of an ontology will depend on the ability to reason about

individuals.
• This requires a mechanism to describe the classes that individuals belong to and the

properties that they inherit by virtue of class membership.

• We can always assert specific properties about individuals, but much of the power of
ontologies comes from class-based reasoning.

• Sometimes we want to emphasize the distinction between a class as an
object and a class as a set containing elements.
• The set of individuals that are members of a class are called the extension of the class.

Simple Named Classes

• Every individual in the OWL world is a member of the class owl:Thing.
• Named classes

• Example: <owl:Class rdf:ID=“Staff"/>

 <owl:Class rdf:ID=“Researcher"/>

 <owl:Class rdf:ID=“Academic"/>

• The fundamental taxonomic constructor for classes is rdfs:subClassOf.
• Example: <owl:Class rdf:ID=“Researcher">
 <rdfs:subClassOf rdf:resource="#Staff" />

 ...

 </owl:Class>

Individuals

• Individuals enable us to describe members of a class.
• An individual is minimally introduced by declaring it to be a member of a class.

<owl:Thing rdf:ID=“Postdoc" />

 <owl:Thing rdf:about="#Postdoc">

 <rdf:type rdf:resource="#Researcher"/>

 …
 </owl:Thing>

• rdf:type is an RDF property that ties an individual to a class of which it is a member.

Simple Properties

• Properties allow asserting general facts about the members of classes
and defining specific facts about individuals.

• A property is a binary relation.

• Two types of properties are distinguished:
• datatype properties, relations between instances of classes and RDF literals and

XML Schema datatypes

• object properties, relations between instances of two classes.

53

Simple Properties- Example

<owl:ObjectProperty rdf:ID=“hasSupervisor">

 <rdfs:domain rdf:resource="# PhDStudent "/>

 <rdfs:range rdf:resource="#Academic"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID=“demonstratedBy">

 <rdfs:domain rdf:resource="#Lab" />

 <rdfs:range rdf:resource="#PhDStudent" />

</owl:ObjectProperty>

54

Simple Properties- Example

Using DatatypeProperty

<owl:Class rdf:ID=“hasName" />

<owl:DatatypeProperty rdf:ID=“nameValue">

 <rdfs:domain rdf:resource="#PhDStudent" />

 <rdfs:range rdf:resource="&xsd; string"/>

</owl:DatatypeProperty>

55

Simple Properties- Constraints

<owl:Class rdf:ID=“PhDStudent">

 <rdfs:subClassOf rdf:resource=“#DeptMembers"/> <rdfs:subClassOf>
 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasSupervisor"/>
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>

 </owl:Restriction>

 </rdfs:subClassOf>

...

</owl:Class>

Ontology design
Philosophical principles

1. Clarity: understandable not only for machines but also for humans.

2. Coherence: consistency of formal and informal layers of ontology (axioms vs.
natural language documentation and labels).

3. Extendibility

4. Minimal coding bias: specification of ontologies should remain at the knowledge
level (if it is possible) without depending on a particular symbol-level encoding.

5. Minimal ontological commitment: defining only those terms that are essential to
the communication of knowledge consistent theory.

6. Proper sub-concept taxonomies

Ontology design
Technical principles

1. Define and use of naming conventions

• Capitalisation: it is a common convention to begin concept names with capital, instance
and property names with non-capital letters.

1. Delimiters: common conventions are using space or “-” or writing names in CamelCase
which eliminates the need for delimiters.

2. Singular or plural: it is common to use the singular form in the concept names.

2. Scoping the ontology

1. Introducing new entities: introduce a new concept only if it is significant for the
problem domain.

Ontology design principles
Technical principles (cont.)

3. Optimal number of sub-concepts;
• New concept or property value - concept or instance?

• If it is meaningful to speak of a “kind of X” in the target domain i.e. the entity
represents a set of something, make X a concept. Otherwise X should be an
instant.

4. Document your ontologies;

5. Represent disjoint and exhaustive knowledge explicitly.

Further Reading OWL

• Industry-scale Knowledge Graphs: Lessons and Challenges

https://queue.acm.org/detail.cfm?ref=rss&id=3332266

• Protégé Tutorials:

1. https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/ProtegeT
utorial.pdf

2. https://protege.stanford.edu/publications/ontology_development/ontology1
01.pdf

https://queue.acm.org/detail.cfm?ref=rss&id=3332266
https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/ProtegeTutorial.pdf
https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/ProtegeTutorial.pdf
https://www.emse.fr/~zimmermann/Teaching/SemWeb/Practice/ProtegeTutorial.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf

Sources

• https://www.w3.org/TR/owl2-primer/

• https://www.w3.org/TR/owl-ref/

• https://www.w3.org/TR/owl2-syntax/#Reflexive_Object_Properties

• Ruben Verborgh, Web Fundamentals, University of Ghent.

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/

