
Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

1

Modeling Knowledge for Industrial
Diagnostics

Objective
In this final combined exercise, we will put in practice all our Web Semantics and Linked Data
knowledge.

In this final practical exercise, you will integrate all the concepts explored throughout the Web
Semantics & Linked Data unit: RDF, RDFS, SPARQL, OWL, logical constraints, reasoning,
ontology modeling, and conceptual analysis.

You will design a full industrial diagnostics ontology, expressing:

• What entities exist in a diagnostic system;

• How they relate;

• What rules and constraints govern them;

• How reasoning can derive new knowledge or detect inconsistencies.

This mirrors real-world industrial AI systems, especially those used for predictive and
corrective maintenance, where:

• Text, logs, or sensor descriptions (unstructured knowledge) must be turned into
structured semantic models

• Machines must infer causes, detect inconsistencies, and propose actions

This also naturally reflects a neuro-symbolic workflow:

• Neural-like phase: you extract concepts, roles, and causal structures from descriptions.

• Symbolic phase: the ontology formalism enforces structure and enables reasoning.

In this exercise, you are the “neural extractor” and Protégé + OWL is the “symbolic reasoner.”
In any other exercise, you can ask a language model to be the “neural extractor.”

PART I - Conceptual Modelling: think like a knowledge engineer

We will start by representing an industrial diagnostics system conceptually, i.e., identifying
entities, relationships, and logical rules that define how things connect.

In the following exercises, consider the Cooling Unit of an Industrial Machine while developing
the following exercises.

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

2

Identify the Concepts (Classes)

Write 6–8 nouns representing the types of things that exist in your diagnostic system.

Examples: Machine, Component, Sensor, Symptom, Cause, Procedure,
Operator.

Note: Think of “classes” as categories of things your system must know about.

Identify the Relationships (Object Properties)

Connect your concepts with verbs or prepositions that describe how they relate to each other.

Examples:
Machine hasComponent Component
Component monitoredBy Sensor

Add Attributes (Data Properties)
Identify the measurable or descriptive features of your domain. These describe characteristics
of things, not relations between them.

Examples:
Sensor hasValue 86.4
Procedure hasDuration 2h

Write 3–5 Triples

Express a few of your facts as RDF-like statements following the pattern subject–predicate–
object.

Examples:

:CloggedFilter :causesSymptom :LowCoolantFlow .

:LowCoolantFlow :causesSymptom :Overheat .

:Fan :isPartOf :CoolingSystem .

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

3

Sketch your ontology
Use your concepts, relationships, and triples to draw a simple diagram showing how things
connect. Add direction and multiplicity if you know them (e.g., “each Machine has multiple
Components”).

Reason
Now imagine your ontology is loaded into a diagnostic reasoning engine. Which questions
would you expect an intelligent system to answer once this knowledge is represented?

Create at least four questions of different types:

• Factual: can be directly retrieved from data (e.g.: Which components belong to
SpindleMachine?)

• Relational: depend on connections between entities (e.g.: Which symptoms are caused by
multiple causes?)

• Inferred: require reasoning or transitive logic (e.g.: If FanFault causes LowAirFlow and
LowAirFlow causes Overheat, what can be inferred about FanFault?)

• Constraint Checking: test logical consistency (e.g.: Does every Machine have at least one
Component?)

Define One Rule or Restriction
Create one logical rule or restriction that would help your ontology reason or maintain
consistency.

Examples:

“Every Procedure mitigates exactly one Cause.”

“No Component can be both Working and Failed.”

“Every Machine must have at least one Component.”

PART II – Implement your ontology

Next, you will be implementing your industrial diagnostics ontology in Protégé. To do that, you
will translate your conceptual model into a formal ontology using Protégé. The goal is to
represent your knowledge using RDF, RDFS, and OWL, and to test how reasoning makes
implicit knowledge explicit.

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

4

The use of your own classes and model, the one you created in the 1st part of this exercise, is
advised. The examples used below are generic ones that serve for exercise demonstration
purpose.

Set up:

• Open Protégé (https://protege.stanford.edu/, select Desktop version).
• Save a new ontology (RDF/XML or Turtle advised)
• Set a base IRI such as:

http://example.org/[yournameORyourgroup]diagnostics#

Optionally, but preferably, load your ontology in Python (as demoed at the end of this Part) to
run reasoning and the SPARQL-like queries.

Create Your Classes (Concepts)
Re-create the main classes you identified in the previous exercise

Machine, Component, Sensor, Symptom, Cause, Procedure

Arrange them hierarchically if possible: CoolingSystem ⊑ Machine; Fan ⊑
Component; ...

Define Object Properties (Relationships)
Add the verbs that link your classes and set domain and range for each property.

Examples:

• hasComponent (domain: Machine, range: Component)
• partOf (domain: Component, range: Machine)
• causesSymptom (domain:

Cause, range: Symptom)
• mitigatesCause (domain:

Procedure, range: Cause)
• monitoredBy (domain:

Component, range: Sensor)
• observes (domain: Sensor,

range: ObservableEntity)

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

5

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

6

Define Data Properties (Attributes)

Add data properties to hold numeric / textual data:

• hasTemperatureValue (range: xsd:float) — e.g. for
Measurement

• hasSeverityLevel (range: xsd:string) — e.g. for Symptom
• hasDurationHours (range: xsd:integer) — e.g. for Procedure
• hasRiskScore (range: xsd:decimal) — e.g. for Procedure or

Cause

Define them in the Data properties tab and assign appropriate domains.

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

7

Add Individuals (Concrete examples)

Create a few example instances to test your ontology and connect them with your object
properties. For example:

• CNC_Station_1 hasComponent Spindle_1
• CNC_Station_1 hasComponent CoolingSystem_1
• CoolingSystem_1 hasComponent Fan_A
• CoolingSystem_1 hasComponent Filter_A
• Spindle_1 hasComponent BearingBlock_1

• CloggedFilter causesSymptom LowCoolantFlow
• BearingWearHigh causesSymptom HighVibration
• LowCoolantFlow causesSymptom SpindleOverheat
• HighVibration causesSymptom SpindleOverheat

• CleanFilterProcedure mitigatesCause CloggedFilter
• ReplaceBearingProcedure mitigatesCause BearingWearHigh
• RepairFanProcedure mitigatesCause FanFault

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

8

Add Logical Restrictions / Axioms

To make the ontology intelligent, not just a glossary, you need to add the axioms you identified
in the first part of this exercise. Use the Class Expression Editor available in the ‘SubClass Of’
tab for expressing your axioms.

Example: Every Machine has at least one Component

Run the Reasoner

Check for:

• Inferred subclasses

• Inferred types of individuals

• If any class becomes unsatisfiable

• If any individual becomes inconsistent

Common issues include:

• Missing domain/range

• Misuse of inverses

• Disjointness violations

• Data property inconsistencies

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

9

OPTIONAL – Use Python to Explore Reasoning

You can load your OWL ontology in Python1 and inspect some inferences programmatically.

pip install owlready2

Example script:

To iterate relationships:

PART III — SPARQL Querying & Reasoning over Your Ontology

Create and run SPARQL queries on your own ontology (the questions below must be adapted
to your classes, individuals, and property names).

You may use the SPARQL tab in Protégé, or use Python + rdflib (see OPTIONAL code example
below).

When possible, compare results before and after running the reasoner.

1 https://owlready2.readthedocs.io/en/v0.49/

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

10

1. Check whether your structural modeling (classes, properties, part–whole relations) is

correct.
a. List all components of your main machine.
b. List all subcomponents of your cooling system.

If you modeled a hierarchy (CoolingSystem → Fan → Bearing), use your part–
whole relation.

If it is transitive, some subcomponents may only appear after reasoning.

c. List all sensors and what they observe.

Return pairs (sensor, observed entity) using your property (e.g., :observes).

Check if every sensor is connected to something meaningful.

2. Diagnostics Queries
a. List all causes and the symptoms they generate.
b. List all procedures and which cause they mitigate.

3. Multi-Step & Inferred Queries

Example: Find all causes that are connected to SpindleOverheat through one or more
intermediate symptoms or conditions.

4. Finally, write SPARQL versions of the questions you identified in Part I (your
competency questions), for example:

a. “Which components are monitored by sensors associated with abnormal
vibration?”

b. “Which procedures mitigate the root causes of spindle overheat?”
c. “Which causes affect more than one component?”

OPTIONAL - Python Reasoning & Querying (example code)

pip install rdflib owlready2 owlrl

Load and inspect the ontology:

Master in Informatics Engineering
Web Semantics and Linked Data

Exercise 7
2025/26

11

Example SPARQL-like query in Python using RDFLib:

