Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Modeling Knowledge for Industrial
Diagnostics

Objective
In this final combined exercise, we will put in practice all our Web Semantics and Linked Data
knowledge.

In this final practical exercise, you will integrate all the concepts explored throughout the Web
Semantics & Linked Data unit: RDF, RDFS, SPARQL, OWL, logical constraints, reasoning,
ontology modeling, and conceptual analysis.

You will design a full industrial diagnostics ontology, expressing:
e What entities exist in a diagnostic system;
e How they relate;
e What rules and constraints govern them;
e How reasoning can derive new knowledge or detect inconsistencies.

This mirrors real-world industrial Al systems, especially those used for predictive and
corrective maintenance, where:

e Text, logs, or sensor descriptions (unstructured knowledge) must be turned into
structured semantic models

e Machines must infer causes, detect inconsistencies, and propose actions

This also naturally reflects a neuro-symbolic workflow:
e Neural-like phase: you extract concepts, roles, and causal structures from descriptions.
e Symbolic phase: the ontology formalism enforces structure and enables reasoning.

In this exercise, you are the “neural extractor” and Protégé + OWL is the “symbolic reasoner.”
In any other exercise, you can ask a language model to be the “neural extractor.”

PART | - Conceptual Modelling: think like a knowledge engineer

We will start by representing an industrial diagnostics system conceptually, i.e., identifying
entities, relationships, and logical rules that define how things connect.

In the following exercises, consider the Cooling Unit of an Industrial Machine while developing
the following exercises.

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

|dentify the Concepts (Classes)

Write 6-8 nouns representing the types of things that exist in your diagnostic system.

Examples: Machine, Component, Sensor, Symptom, Cause, Procedure,
Operator.

Note: Think of “classes” as categories of things your system must know about.

|dentify the Relationships (Object Properties)
Connect your concepts with verbs or prepositions that describe how they relate to each other.

Examples:
Machine hasComponent Component
Component monitoredBy Sensor

Add Attributes (Data Properties)

Identify the measurable or descriptive features of your domain. These describe characteristics
of things, not relations between them.

Examples:
Sensor hasValue 86.4
Procedure hasDuration 2h

Write 3=5 Triples

Express a few of your facts as RDF-like statements following the pattern subject—predicate—
object.

Examples:
:CloggedFilter :causesSymptom :LowCoolantFlow
:LowCoolantFlow :causesSymptom :0Overheat

:Fan :isPartOf :CoolingSystem

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Sketch your ontology

Use your concepts, relationships, and triples to draw a simple diagram showing how things
connect. Add direction and multiplicity if you know them (e.g., “each Machine has multiple
Components”).

Reason

Now imagine your ontology is loaded into a diagnostic reasoning engine. Which questions
would you expect an intelligent system to answer once this knowledge is represented?

Create at least four questions of different types:

e Factual: can be directly retrieved from data (e.g.: Which components belong to
SpindleMachine?)

e Relational: depend on connections between entities (e.g.: Which symptoms are caused by
multiple causes?)

e Inferred: require reasoning or transitive logic (e.g.: If FanFault causes LowAirFlow and
LowAirFlow causes Overheat, what can be inferred about FanFault?)

e Constraint Checking: test logical consistency (e.g.: Does every Machine have at least one
Component?)

Define One Rule or Restriction

Create one logical rule or restriction that would help your ontology reason or maintain
consistency.

Examples:
“Every Procedure mitigates exactly one Cause.”
“No Component can be both Working and Failed.”

“Every Machine must have at least one Component.”

PART Il — Implement your ontology

Next, you will be implementing your industrial diagnostics ontology in Protégé. To do that, you
will translate your conceptual model into a formal ontology using Protégé. The goal is to
represent your knowledge using RDF, RDFS, and OWL, and to test how reasoning makes
implicit knowledge explicit.

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

The use of your own classes and model, the one you created in the 1% part of this exercise, is
advised. The examples used below are generic ones that serve for exercise demonstration
purpose.

Set up:

e Open Protégé (https://protege.stanford.edu/, select Desktop version).
e Save a new ontology (RDF/XML or Turtle advised)

e Setabase IRl such as:
http://example.org/ [yournameORyourgroupldiagnostics#

Optionally, but preferably, load your ontology in Python (as demoed at the end of this Part) to
run reasoning and the SPARQL-like queries.

Create Your Classes (Concepts)
Re-create the main classes you identified in the previous exercise

Machine, Component, Sensor, Symptom, Cause, Procedure

Arrange them hierarchically if possible: CoolingSystem E Machine; Fan E
Component;

Define Object Properties (Relationships)
Add the verbs that link your classes and set domain and range for each property.

Examples:

e hasComponent (domain: Machine, range: Component)
e partOf (domain: Component, range: Machine)

e causesSymptom (domain: Active ontology x Entities x Individuals by class x DL Query
Cause, range: Symptom) Annotation properties Datatypes Individuals
e mitigatesCause (domain: Classes Object properties Data properties
Procedure, range: Cause)
e monitoredBy (domain: ©Ne RO Asserted
Component, range: Sensor) owl:Thing
e oObserves (domain: Sensor, gﬁf
range: ObservableEntity) Machine
ObservableEntity
Component

CoolingSystem
Fan
Filter
Spindle
Measurement
Procedure
Sensor
CriticalSymptom
HighVibration
LowCoolantFlow
SpindleOverheat

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FELJP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Active ontology x Entities x Individuals by class x DL Query x
Annotation properties Datatypes Individuals = EE hasSymptom — http://example.org/diagnostics#hasSymptom

Classes Object properties Data properties Annotations = Usage

Object property hierarchy: hasSymptom EMSm K fAnnotations: hasSymptom]t 1= 0] e
@ X O Asserted Annotations

B owl:topObjectProperty
B affectsComponent
Bl causesSymptom
B hasComponent
B hasEvent
[_lhasSymptom

BN monitoredBy

B observedBy

= observes
BN partOf

B targetsComponent Functional Equivalent To

Inverse functic
SubProperty Of

Transitive
i Inverse Of
Symmetric
Asymmetric Domains (intersection)
. @ Machine
Reflexive
Irreflexive Ranges (intersection)
@ Symptom
Disjoint With

SuperProperty Of (Chain)

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FELJP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Define Data Properties (Attributes)

Add data properties to hold numeric / textual data:

e hasTemperatureValue (range: xsd:float) — e.g. for
Measurement

e hasSeveritylLevel (range: xsd:string) — e.g. for Symptom

e hasDurationHours (range: xsd:integer) — e.g. for Procedure

e hasRiskScore (range: xsd:decimal) — e.g. for Procedure or
Cause

Define them in the Data properties tab and assign appropriate domains.

Active ontology x Entities x Individuals by class x DL Query x

Annotation properties Datatypes Individuals = W hasSeverityLevel — http://example.org/diagnostics#hasSeverityLevel

Classes Object properties Data properties Annotations | Usage

Data property hierarchy: hasSeveritylevel =@ fAnnotations: hasSeverityLevel RIDE ™
e X0 Asserted Annotations

B owl:topDataProperty
B hasDurationHours
|_lhasSeverityLevel
BN hasTemperature
B hasUnit
B hasVibration
B riskRating
B sparePartsCost

Charact MHEMm X f§ Description: hasSeverityLevel DEER
Functional Equivalent To

SubProperty Of

Domains (intersection)

@ Symptom

Ranges

@ xsd:string

Disjoint With

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FEUP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Add Individuals (Concrete examples)

Create a few example instances to test your ontology and connect them with your object
properties. For example:

e CNC station 1 hasComponent Spindle 1

e CNC station 1 hasComponent CoolingSystem 1
e CoolingSystem 1 hasComponent Fan A

e CoolingSystem 1 hasComponent Filter A

e Spindle 1 hasComponent BearingBlock 1

e (CloggedFilter causesSymptom LowCoolantFlow

e BearingWearHigh causesSymptom HighVibration
e TLowCoolantFlow causesSymptom SpindleOverheat
e HighVibration causesSymptom SpindleOverheat

e (CleanFilterProcedure mitigatesCause CloggedFilter
e ReplaceBearingProcedure mitigatesCause BearingWearHigh
e RepairFanProcedure mitigatesCause FanFault

Active ontology x Entities x Individuals by class x DL Query x

Annotation properties Datatypes Individuals = 0 CNC_Station_1 — http://example.org/diagnostics#CNC_Station_1

Classes Object properties Data properties Annotations Usage

Individuals: CNC_Station_1 m=mx Annotations: CNC_Station_1 B IR
.+ x Annotations

@ BearingBlock1

@ CleanFilterProcedure

@ CloggedFilter
CNC_Station_1

@ CoolingSystem_1

’ Fan_A

@ FanFault

@ Filter A

: HighBearingWear Description: CNC_Station_1 EIMEm& fProperty assertions: CNC_Station_1 MEmX
HighVibration

’ LowCoolantFlow Types Object property assertions

@ RepairFanProcedure @ Machine B hasComponent

@ ReplaceBearingProcedure CoolingSystem_1

@ spindle_1 Same Individual As mmhasComponent Spindle_1

@ spindleOverheat B hasSymptom

SpindleOverheat

@ TempSensorl Different Individuals P

’ VibrationMeasurement_20251125T1533

@ vibrationSensor_1 Data property assertions

Negative object property assertions

Negative data property assertions

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

Add Logical Restrictions / Axioms

To make the ontology intelligent, not just a glossary, you need to add the axioms you identified
in the first part of this exercise. Use the Class Expression Editor available in the ‘SubClass Of’
tab for expressing your axioms.

Example: Every Machine has at least one Component

Active ontology x Entities x Individuals by class x DL Query x

Annotation properties Datatypes Individuals = Machine — http://example.org/diagnostics##Machine
Classes Object properties Data properties Annotations | Usage
W O Asserted Annotations
\Thi rdfs:comment
ow.(‘:l' "9 any individual that is a Machine must have at least one hasComponent link to something that is a
Eaus(e Component.
ven

ObservableEntity
Procedure
Sensor

Symptom

Equivalent To

SubClass Of
hasC some Ci

General class axioms
SubClass Of (Anonymous Ancestor)

Instances

@ CNC_station_1
Target for Key

Disjoint With

Run the Reasoner
Check for:

o Inferred subclasses

o Inferred types of individuals

o If any class becomes unsatisfiable

e If any individual becomes inconsistent
Common issues include:

¢ Missing domain/range

e Misuse of inverses

e Disjointness violations

e Data property inconsistencies

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE(JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

OPTIONAL — Use Python to Explore Reasoning

You can load your OWL ontology in Python® and inspect some inferences programmatically.

pip install owlready?

Example script:
owlready2 get_ontology, sync_reasoner

st path to your .owl file

onto = get_ontology(

onto:
sync_reasoner()

Machine = onto.Machine
OverheatedMachine = onto.OverheatedMachine

print()
m Machine.instances():
print(, m)

print(
m OverheatedMachine. instances():
print(, m)

To iterate relationships:

proc onto.Procedure.instances():
cause proc.mitigatesCause:

print(proc.name, , cause.name)

PART IIl — SPARQL Querying & Reasoning over Your Ontology

Create and run SPARQL queries on your own ontology (the questions below must be adapted
to your classes, individuals, and property names).

You may use the SPARQL tab in Protégé, or use Python + rdflib (see OPTIONAL code example
below).

When possible, compare results before and after running the reasoner.

! https://owlready2.readthedocs.io/en/v0.49/

Master in Informatics Engineering

PORTO Web Semantics and Linked Data

FE|JP FACULDADE DE ENGENHARIA Exercise 7
UNIVERSIDADE DO PORTO 2025/26

1. Check whether your structural modeling (classes, properties, part—whole relations) is
correct.
a. List all components of your main machine.
b. List all subcomponents of your cooling system.

If you modeled a hierarchy (CoolingSystem - Fan - Bearing), use your part—
whole relation.

If it is transitive, some subcomponents may only appear after reasoning.

c. List all sensors and what they observe.
Return pairs (sensor, observed entity) using your property (e.g., :observes).
Check if every sensor is connected to something meaningful.

2. Diagnostics Queries
a. List all causes and the symptoms they generate.
b. List all procedures and which cause they mitigate.
3. Multi-Step & Inferred Queries

Example: Find all causes that are connected to SpindleOverheat through one or more
intermediate symptoms or conditions.

4. Finally, write SPARQL versions of the questions you identified in Part | (your
competency questions), for example:
a. “Which components are monitored by sensors associated with abnormal
vibration?”
b. “Which procedures mitigate the root causes of spindle overheat?”
c. “Which causes affect more than one component?”

OPTIONAL - Python Reasoning & Querying (example code)

pip install rdflib owlready2 owlrl

Load and inspect the ontology:

Master in Informatics Engineering
Web Semantics and Linked Data

PORTO Exercise 7

FEJP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO 2025/26

get_ontology, sync_reasoner

owlready?
onto = get_ontology/(

onto:
sync_reasoner()

OverheatedMachine = onto.OverheatedMachine

)

print(
OverheatedMachine.instances():

m
print(m)

Example SPARQL-like query in Python using RDFLib:
owlready? get_ontology, sync_reasoner

onto = get_ontology/(

onto:

sync_reasoner()

OverheatedMachine = onto.OverheatedMachine

print()
m OverheatedMachine.instances():

print(m)

